Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode


Here, we introduce high-quality CuO–Graphene nanocomposite synthesis by hydrothermal method and used it as the interfacial layer to investigate radiation resistance in metal/interlayer/semiconductor (MIS) junction diode structure. In order to determine the effect of the nanocomposite layer on the electrical characteristics of Al/CuO–Graphene/p-Si/Al MIS junction diode, the current–voltage (IV) measurements were performed at room temperature. The main electrical parameters of the junctions such as ideality factor (n), barrier height (Φb) were calculated using the thermionic emission (TE) theory and the results were compared with reference Schottky Diode (SD). The Φb and n values were calculated as 0.70 eV, 1.93 and 0.72 eV, 1.75 for reference SD and CuO–Graphene/p-Si MIS junction, respectively. The n value of the device reduced in the presence of the nanocomposite layer between the metal and the semiconductor. In addition, the Φb and series resistance (Rs) parameters were calculated from IV measurements using Norde functions and the results were compared with the TE method. Furthermore, to determine the radiation tolerance property of the devices, gamma radiation was applied and the electrical parameters were evaluated for unirradiated and irradiated cases. The results showed that the fabricated devices may have various applications; thanks to radiation tolerance property. To the best of our knowledge, there is no research available regarding the exposure of CuO–Graphene thin films to gamma-ray irradiation studied using the IV technique. Therefore, we believe that this study can make an important contribution to the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    E. Uğurel, Ş. Aydoğan, K. Şerifoğlu, A. Türüt, Effect of 6 MeV electron irradiation on electrical characteristics of the Au/n-Si/Al Schottky diode. Microelectron. Eng. 85, 2299–2303 (2008)

    Google Scholar 

  2. 2.

    P. Pandaram, A. Saranya, S. Jothi, B. Lawrence, N. Prithivikumaran, N. Jeyakumaran, Non-linear structural and surface morphological modifications due to gamma irradiation in p-type porous silicon. Mater. Sci. Semicond. Process. 104, 104678 (2019)

    CAS  Google Scholar 

  3. 3.

    M.E.I. Ahmed, F. Taghizadeh, F.D. Auret, W.E. Meyer, J.M. Nel, The effect of alpha particle irradiation on electrical properties and defects of ZnO thin films prepared by sol-gel spin coating. Mater. Sci. Semicond. Process. 101, 82–86 (2019)

    CAS  Google Scholar 

  4. 4.

    Ö. Güllü, Ş. Aydoğan, K. Şerifoğlu, A. Türüt, Electron irradiation effects on the organic-on-inorganic silicon Schottky structure. Nucl. Instrum. Methods Phys. Res. Sect. A 593, 544–549 (2008)

    Google Scholar 

  5. 5.

    Ö. Güllü, F. Demir, F.E. Cimilli, M. Biber, γ-Irradiation-induced changes at the electrical characteristics of Sn/p–Si Schottky contacts. Vacuum 82, 789–793 (2008)

    Google Scholar 

  6. 6.

    N. Dharmarasu, S. Arulkumaran, R.R. Sumathi, P. Jayavel, J. Kumar, P. Magudapathy, K.G.M. Nair, Low energy proton irradiation induced interface defects on Pd/n-GaAs Schottky diodes and its characteristics. Nucl. Instrum. Methods Phys. Res. B 140, 119–123 (1998)

    CAS  Google Scholar 

  7. 7.

    M.M. El-Nahass, A.A.M. Farag, F. Abd-El-Salam, Effect of gamma irradiation on the optical properties of nano-crystalline InP thin films. Appl. Surf. Sci. 255, 9439–9443 (2009)

    CAS  Google Scholar 

  8. 8.

    M.M. El-Nahass, A.A.M. Farag, A.A. Atta, Influence of heat treatment and gamma rays irradiation on the structural and optical characterizations of nano-crystalline cobalt phthalocyanine thin films. Synth. Met. 159, 589–594 (2009)

    CAS  Google Scholar 

  9. 9.

    K.S. Ramaiah, V.S. Raja, A.K. Bhatnagar, F.S. Juang, S.J. Chang, Y.K. Su, Effect of annealing and γ-irradiation on the properties of CuInSe2 thin films. Mater. Lett. 45, 251–261 (2000)

    CAS  Google Scholar 

  10. 10.

    A.M. İbrahim, L.I. Soliman, Effect of γ-irradiation on optical and electrical properties of Se1xTex. Radiat. Phys. Chem. 53, 469–475 (1998)

    Google Scholar 

  11. 11.

    K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Structural, optical and electrical properties of gamma irradiated SnO thin films. Radiat. Phys. Chem. 91, 35–39 (2013)

    CAS  Google Scholar 

  12. 12.

    M.M. El-Nahass, A.A.A. Darwish, E.F.M. El-Zaidia, A.E. Bekheet, Gamma irradiation effect on the structural and optical properties of nanostructured InSe thin films. J. Non-Cryst. Solids 382, 74–78 (2013)

    CAS  Google Scholar 

  13. 13.

    N. Baydoğan, O. Ozdemir, H. Çimenoğlu, The improvement in the electrical properties of nanospherical ZnO: Al thin film exposed to irradiation using a Co-60 radioisotope. Radiat. Phys. Chem. 89, 20–27 (2013)

    Google Scholar 

  14. 14.

    N. Dewan, K. Sreenivas, V. Gupta, Comparative study on TeO2 and TeO3 thin film for γ-ray sensor application. Sens. Actuators 147, 115–120 (2008)

    CAS  Google Scholar 

  15. 15.

    M.A. Salari, M. Sağlam, B. Güzeldir, The protection from the effects of gamma rays of metal-semiconductor diodes by means of ZnO thin interface layer. Radiat. Phys. Chem. 165, 108416 (2019)

    CAS  Google Scholar 

  16. 16.

    S.K. Sen, M. Noor, M.A. AlMamun, M.S. Manir, M.A. Matin, M.A. Hakim, S. Nur, S. Dutta, An investigation of 60Co gamma radiation-induced effects on the properties of nanostructured α-MoO3 for the application in optoelectronic and photonic devices. Opt. Quantum Electron. 51, 82 (2019)

    Google Scholar 

  17. 17.

    H. Huang, X. Tang, F. Chen, J. Liu, H. Li, D. Chen, Graphene damage effects on radiation-resistance and configuration of copper-graphene nanocomposite under irradiation: a molecular dynamics study. Sci. Rep. 6, 39391 (2016)

    CAS  Google Scholar 

  18. 18.

    H. Huang, X. Tang, F. Chen, J. Liu, D. Chen, Role of graphene layers on the radiation resistance of copper-graphene nanocomposite: Inhibiting the expansion of thermal spike. J. Nucl. Mater. 493, 322–329 (2017)

    CAS  Google Scholar 

  19. 19.

    Z. Çaldıran, A.R. Deniz, Y. Şahin, Ö. Metin, K. Meral, Ş. Aydoğan, The electrical characteristics of the Fe3O4/Si junctions. J. Alloy. Compd. 552, 437–442 (2013)

    Google Scholar 

  20. 20.

    A. Tataroğlu, Ş. Altındal, M.M. Bülbül, 60Co γ irradiation effects on the current–voltage (I–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes. Nucl. Instrum. Methods Phys. Res. Sect. A 568, 863–868 (2006)

    Google Scholar 

  21. 21.

    İ.Y. Erdoğan, Ö. Güllü, Optical and structural properties of CuO nanofilm: its diode application. J. Alloy Compd. 492, 283–378 (2010)

    Google Scholar 

  22. 22.

    V.R. Reddy, C.J. Choi, Microstructural, chemical and electrical characteristics of Au/magnetite (Fe3O4)/n-GaN MIS junction with a magnetite interlayer. Vacuum 164, 233–241 (2019)

    Google Scholar 

  23. 23.

    Y. Xu, J. Bi, K. Xi, M. Liu, The effects of γ-ray irradiation on graphene/n-Si Schottky diodes. Appl. Phys. Express 12, 61004 (2019)

    CAS  Google Scholar 

  24. 24.

    A. Di Bartolomeo, G. Luongo, L. Iemmo, F. Urban, F. Giubileo, Graphene-silicon Schottky diodes for photodetection. IEEE Trans. Nanotechnol. 17, 1133–1137 (2018)

    CAS  Google Scholar 

  25. 25.

    T.L. Yang, L. Yang, H. Liu, H.L. Zhou, S.M. Peng, X.S. Zhou, F. Gao, X.T. Zu, Ab initio study of stability and migration of point defects in copper-graphene layered composite. J. Alloy Compd. 692, 49–58 (2017)

    CAS  Google Scholar 

  26. 26.

    Y. Kim, J. Baek, S. Kim, S. Kim, S. Ryu, S. Jeon, S.M. Han, Radiation resistant vanadium-graphene nanolayered composite. Sci. Rep. 6, 24785 (2016)

    CAS  Google Scholar 

  27. 27.

    S. Si, W. Li, X. Zhao, M. Han, Y. Yue, W. Wu, S. Guo, X. Zhang, Z. Dai, X. Wang, X. Xiao, C. Jiang, Adv. Mater. 29, 1604623 (2017)

    Google Scholar 

  28. 28.

    N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999)

    CAS  Google Scholar 

  29. 29.

    H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Am. Chem. Soc. 132, 7472–7477 (2010)

    CAS  Google Scholar 

  30. 30.

    H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, Evaluation of solution-processes reduced graphene oxide films as transparents conductors. ACS Nano 2, 463–470 (2008)

    CAS  Google Scholar 

  31. 31.

    D. Li, D. Yan, X. Zhang, J. Li, T. Lu, L. Pan, Porous CuO/reduced graphene oxide composites synthesized from metal-organic frameworks as anodes for high-performance sodium-ion batteries. J. Colloid Interface Sci. 497, 350–358 (2017)

    CAS  Google Scholar 

  32. 32.

    A. Arshad, J. Iqbal, M. Siddiq, M.U. Ali, A. Ali, H. Shabbir, U.B. Nazeer, M.S. Saleem, Solar light triggered catalytic performance of graphene-CuO nanocomposite for waste water treatment. Ceram. Int. 43, 10654–10660 (2017)

    CAS  Google Scholar 

  33. 33.

    K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv. 4, 23485–23491 (2014)

    CAS  Google Scholar 

  34. 34.

    Y.J. Mai, X.L. Wang, Y.Q. Qiao, D. Zhang, C.D. Gu, J.P. Tu, CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 56, 2306–2311 (2011)

    CAS  Google Scholar 

  35. 35.

    Y. Akinay, A.O. Kizilcay, Computation and modeling of microwave absorbing CuO/graphene nanocomposites. Polym. Compos. 41, 227–232 (2020).

    CAS  Article  Google Scholar 

  36. 36.

    M. Yilmaz, D. Tatar, E. Sonmez, C. Cirak, S. Aydogan, R. Gunturkun, Investigation of structural, morphological, optical, and electrical properties of Al doped ZnO thin films via spin coating technique. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 489–494 (2015)

    Google Scholar 

  37. 37.

    S. Kumar, A.K. Ojha, D. Bhorolua, J. Das, A. Kumar, A. Hazarika, Facile synthesis of CuO nanowires and Cu2O nanospheres grown on rGO surface and exploiting its photocatalytic, antibacterial and supercapacitive properties. Phys. B 558, 74–81 (2019)

    CAS  Google Scholar 

  38. 38.

    X. Zhang, D. Zhang, X. Ni, H. Zheng, Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate. Solid-State Electron. 52, 245–248 (2008)

    CAS  Google Scholar 

  39. 39.

    S. Sonmezoglu, S. Senkul, R. Tas, G. Cankaya, M. Can, Electrical characteristics of an organic thin copolymer/p-Si Schottky barrier diode. Thin Solid Films. 518, 4375–4379 (2010)

    Google Scholar 

  40. 40.

    M.F. Karabat, İ. Arsel, Al/CuO/p-Si/Al Diyot Yapısının Elektriksel Özellikleri, Batman University. J. Life Sci. 5, 40–53 (2015)

    Google Scholar 

  41. 41.

    K. Mageshwari, S. Han, J. Park, Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode. Semicond. Sci. Technol. 31, 055004 (2016)

    Google Scholar 

  42. 42.

    H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yildirim, Electrical properties of Al/PCBM:ZnO/p-Si heterojuntion for photodiode application. J. Alloy. Compd. 827, 154279 (2020)

    CAS  Google Scholar 

  43. 43.

    A. Turut, A. Karabulut, K. Ejderha, N. Biyikli, Capacitance–conductance–current–voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater. Sci. Semicond. Process. 39, 400–407 (2015)

    CAS  Google Scholar 

  44. 44.

    A. Karabulut, I. Orak, M. Çaglar, A. Turut, The current–voltage characteristics over the measurement temperature of 60–400 K in the Au/Ti/n-GaAs contacts with high dielectric HfO2 interfacial layer. Surf. Rev. Lett. 26, 1950045 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    E.H. Nicollian, J.R. Brews, MOS/metal oxide semiconductor/physics and technology (Wiley, New York, 1982)

    Google Scholar 

  46. 46.

    P. Durmus, M. Yildirim, S. Altindal, Controlling the electrical characteristics of Al/p-Si structures through Bi4Ti3O12 interfacial layer. Curr. Appl. Phys. 13, 1630–1636 (2013)

    Google Scholar 

  47. 47.

    M. Pattabi, S. Krishnan, X. Mathew, Effect of temperature and electron irradiation on the I–V characteristics of Au/CdTe Schottky diodes. Sol. Energy 81, 111–116 (2007)

    CAS  Google Scholar 

  48. 48.

    Ö. Güllü, M. Çankaya, M. Biber, A. Türüt, Gamma irradiation-induced changes at the electrical characteristics of organic-based Schottky structures. J. Phys. D 41, 135103 (2008)

    Google Scholar 

  49. 49.

    M. Mamor, Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts. J. Phys. Condens. Matter. 21, 335802 (2009)

    CAS  Google Scholar 

Download references


The authors would like to thank Dr. Sevda Sarıtaş for her help with XRD and UV analysis.

Author information



Corresponding author

Correspondence to Elif Daş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orhan, Z., Cinan, E., Çaldıran, Z. et al. Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. J Mater Sci: Mater Electron (2020).

Download citation