Ionic liquid-modified ZnO-based electron transport layer for inverted organic solar cells

Abstract

In this work, a novel ionic liquid (IL) is demonstrated as an interface modification layer in photovoltaic devices to improve power conversion efficiency (PCE) in inverted organic solar cell (i-OSCs). As a result, the PTB7-Th:PC71BM-based devices using ZnO/IL as ETL layer exhibited over 15% PCE increment with enhanced short-circuit current density (Jsc) and fill factor (FF), compared with pure ZnO appliance in ETL. The ZnO layer modified with IL has a better electron extraction capability and lower work function, both of which contribute to better device performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, L. Yu, Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115(23), 12666–12731 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    L. Nian, K. Gao, F. Liu, Y. Kan, X. Jiang, L. Liu, Z. Xie, X. Peng, T.P. Russell, Y. Ma, 11% Efficient ternary organic solar cells with high composition tolerance via integrated near-IR sensitization and interface engineering. Adv. Mater. 28(37), 8184–8190 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    C. Duan, F. Huang, Y. Cao, Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J. Mater. Chem. 22(21), 10416–10434 (2012)

    CAS  Article  Google Scholar 

  4. 4.

    L. Nian, K. Gao, Y. Jiang, Q. Rong, X. Hu, D. Yuan, F. Liu, X. Peng, T.P. Russell, G. Zhou, Small-molecule solar cells with simultaneously enhanced short-circuit current and fill factor to achieve 11% efficiency. Adv. Mater. 29(29), 1700616 (2017)

    Article  Google Scholar 

  5. 5.

    M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012)

    Article  Google Scholar 

  6. 6.

    Q. Fan, Q. Zhu, Z. Xu, W. Su, J. Chen, J. Wu, X. Guo, W. Ma, M. Zhang, Y. Li, Chlorine substituted 2D-conjugated polymer for high-performance polymer solar cells with 13.1% efficiency via toluene processing. Nano Energy 48, 413–420 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    Q. Yang, S. Yu, P. Fu, W. Yu, Y. Liu, X. Liu, Z. Feng, X. Guo, C. Li, Boosting performance of non-fullerene organic solar cells by 2D g-C3N4 doped PEDOT:PSS. Adv. Funct. Mater 30(15), 1910205 (2020)

    CAS  Article  Google Scholar 

  8. 8.

    A.R.M. Yusoff, D. Kim, H.P. Kim, F.K. Shneider, W.J. da Silva, J. Jang, A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy Environ. Sci. 8(1), 303–316 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    L. Nian, Y. Kan, H. Wang, K. Gao, B. Xu, Q. Rong, R. Wang, J. Wang, F. Liu, J. Chen, G. Zhou, T.P. Russell, A.K.Y. Jen, Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. Energy Environ. Sci. 11(12), 3392–3399 (2019)

    Article  Google Scholar 

  10. 10.

    K. Gao, S.B. Jo, X. Shi, L. Nian, M. Zhang, Y. Kan, F. Lin, B. Kan, B. Xu, Q. Rong, L. Shui, F. Liu, X. Peng, G. Zhou, Y. Cao, A.K.Y. Jen, Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies. Adv. Mater. 31(12), 1807842 (2019)

    Article  Google Scholar 

  11. 11.

    L. Lu, T. Xu, I.H. Jung, L. Yu, Match the interfacial energy levels between hole transport layer and donor polymer to achieve high solar cell performance. J. Phys. Chem. C 118(40), 22834–22839 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    J.-H. Huang, T.-Y. Huang, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Wet-milled transition metal oxide nanoparticles as buffer layers for bulk heterojunction solar cells. RSC Adv. 2(19), 7487–7491 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Inverted organic photovoltaic cells. Chem. Soc. Rev. 45(10), 2937–2975 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    R. Xia, D.-S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J.S. Kim, J.C. deMello, D.D.C. Bradley, J. Nelson, Investigation of a conjugated polyelectrolyte interlayer for inverted polymer: fullerene solar cells. Adv. Energy Mater. 3(6), 718–723 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y. Wang, Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 95, 1785–1799 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    H. Oh, J. Krantz, I. Litzov, T. Stubhan, L. Pinna, C.J. Brabec, Comparison of various sol–gel derived metal oxide layers for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 95(8), 2194–2199 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S.A. Choulis, C.J. Brabec, Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 89(23), 233517 (2006)

    Article  Google Scholar 

  18. 18.

    H.-L. Yip, A.K.Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5(3), 5994–6011 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    L. Nian, W. Zhang, S. Wu, L. Qin, L. Liu, Z. Xie, H. Wu, Y. Ma, Perylene bisimide as a promising zinc oxide surface modifier: enhanced interfacial combination for highly efficient inverted polymer solar cells. ACS Appl. Mater. Interfaces 7(46), 25821–25827 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    H. Schmidt, K. Zilberberg, S. Schmale, H. Flügge, T. Riedl, W. Kowalsky, Transient characteristics of inverted polymer solar cells using titaniumoxide interlayers. Appl. Phys. Lett. 96(24), 243305 (2010)

    Article  Google Scholar 

  21. 21.

    H. Zhang, T. Stubhan, N. Li, M. Turbiez, G.J. Matt, T. Ameri, C.J. Brabec, A solution-processed barium hydroxide modified aluminum doped zinc oxide layer for highly efficient inverted organic solar cells. J. Mater. Chem. A 2(44), 18917–18923 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    S. Nho, G. Baek, S. Park, B.R. Lee, M.J. Cha, D.C. Lim, J.H. Seo, S.-H. Oh, M.H. Song, S. Cho, Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy Environ. Sci. 9(1), 240–246 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    H. Zhang, R.C. Shallcross, N. Li, T. Stubhan, Y. Hou, W. Chen, T. Ameri, M. Turbiez, N.R. Armstrong, C.J. Brabec, Overcoming electrode-induced losses in organic solar cells by tailoring a quasi-ohmic contact to fullerenes via solution-processed alkali hydroxide layers. Adv. Energy Mater. 6(9), 1502195 (2016)

    Article  Google Scholar 

  24. 24.

    S. Trost, K. Zilberberg, A. Behrendt, A. Polywka, P. Görrn, P. Reckers, J. Maibach, T. Mayer, T. Riedl, Overcoming the “light-soaking” issue in inverted organic solar cells by the use of Al:ZnO electron extraction layers. Adv. Energy Mater. 3(11), 1437–1444 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    E.J. Lee, S.W. Heo, Y.W. Han, D.K. Moon, An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. J. Mater. Chem. C 4(13), 2463–2469 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    G. Cheng, W.-Y. Tong, K.-H. Low, C.-M. Che, Thermal-annealing-free inverted polymer solar cells using ZnO/Cs2CO3 bilayer as electron-selective layer. Sol. Energy Mater. Sol. Cells 103, 164–170 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    Q. Rong, J. Zhao, H. Yu, N. Li, Q. Zhang, D. Yuan, W. Liu, D. Zheng, X. Gao, L. Shui, G. Zhou, L. Nian, Light manipulating electrode based on high optical haze aluminum-doped zinc oxide for highly efficient indium-tin-oxide free organic solar cells with over 13% efficiency. J. Mater. Chem. C 7(28), 8515–8521 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    W. Yu, L. Zhou, S. Yu, P. Fu, X. Guo, C. Li, Ionic liquids with variable cations as cathode interlayer for conventional polymer solar cells. Org. Electron. 42, 387–392 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    T. Torimoto, T. Tsuda, K.-I. Okazaki, S. Kuwabata, New frontiers in materials science opened by ionic liquids. Adv. Mater. 22(11), 1196–1221 (2010)

    CAS  Article  Google Scholar 

  30. 30.

    B.R. Lee, H. Choi, J. SunPark, H.J. Lee, S.O. Kim, J.Y. Kim, M.H. Song, Surface modification of metal oxide using ionic liquid molecules in hybrid organic–inorganic optoelectronic devices. J. Mater. Chem. 21(7), 2051–2053 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, J.H. Davis, M. Watanabe, P. Simon, C.A. Angell, Energy applications of ionic liquids. Energy Environ. Sci. 7(1), 232–250 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    W. Yu, L. Huang, D. Yang, P. Fu, L. Zhou, J. Zhang, C. Li, Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer. J. Mater. Chem. A 3(20), 10660–10665 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    V.-H. Tran, R. Khan, I.-H. Lee, S.-H. Lee, Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 179, 260–269 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    B.R. Lee, E.D. Jung, Y.S. Nam, M. Jung, J.S. Park, S. Lee, H. Choi, S.-J. Ko, N.R. Shin, Y.-K. Kim, S.O. Kim, J.Y. Kim, H.-J. Shin, S. Cho, M.H. Song, Amine-based polar solvent treatment for highly efficient inverted polymer solar cells. Adv. Mater. 26(3), 494–500 (2014)

    CAS  Article  Google Scholar 

  35. 35.

    J.C. Blakesley, F.A. Castro, W. Kylberg, G.F.A. Dibb, C. Arantes, R. Valaski, M. Cremona, J.S. Kim, J.-S. Kim, Towards reliable charge-mobility benchmark measurements for organic semiconductors. Org. Electron. 15(6), 1263–1272 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    V.D. Mihailetchi, J. Wildeman, P.W.M. Blom, Space-charge limited photocurrent. Phys. Rev. Lett. 94(12), 126602 (2005)

    CAS  Article  Google Scholar 

  37. 37.

    L. Nian, W. Zhang, N. Zhu, L. Liu, Z. Xie, H. Wu, F. Würthner, Y. Ma, Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 137(22), 6995–6998 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    A.K.K. Kyaw, D.H. Wang, V. Gupta, J. Zhang, S. Chand, G.C. Bazan, A.J. Heeger, Efficient solution-processed small-molecule solar cells with inverted structure. Adv. Mater. 25(17), 2397–2402 (2013)

    CAS  Article  Google Scholar 

  39. 39.

    T.P. Chou, Q. Zhang, G. Cao, Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells. J. Phys. Chem. C 111(50), 18804–18811 (2007)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51803063, 51561135014), Guangdong Basic and Applied Basic Research Foundation (2019B151502060), and Guangdong Natural Science Foundation (2018A030313257), Program for Chang Jiang Scholars and Innovative Research Teams in Universities (No. IRT_17R40), leading talents of Guangdong province Program (No. 00201504), Science and Technology Program of Guangzhou (No. 2019050001), Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (Grant No. 2017B030301007), MOE International Laboratory for Optical Information Technologies, and 111 Project.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Li Nian or Qikun Rong or Na Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Cui, M., Nian, L. et al. Ionic liquid-modified ZnO-based electron transport layer for inverted organic solar cells. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03818-5

Download citation