Crystal structure, infrared spectra, and microwave dielectric properties of low-firing Nd2Zr3(MoO4)9 ceramics prepared by reaction-sintering process

Abstract

Low temperature-sintered ceramics Nd2Zr3(MoO4)9 were successfully prepared via reaction-sintering method. The sintering behavior, microwave dielectric properties, crystal structure, and microstructure were analyzed systematically. XRD and Rietveld refinement results revealed that all samples formed a pure trigonal structure phase with the space group of R-3c. Density determination showed that ceramics possessed the highest relative density when sintered at 800 °C for 6 h. SEM image further confirmed that ceramics possessed dense and homogeneous microstructure at the optimum sintering temperature 800 °C. Far infrared spectra analysis showed the structural phonon oscillation at infrared region played an important role in polarization. Nd2Zr3(MoO4)9 ceramics obtained the optimum microwave dielectric properties of εr= 10.01, Q × f = 55,923 GHz, τf= − 13.81 ppm/ °C when sintered at 800 °C for 6 h.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y. Tang, M.Y. Xu, L. Duan, J.Q. Chen, C.C. Li, H.C. Xiang, L. Fang, Structure, microwave dielectric properties, and infrared reflectivity spectrum of olivine type Ca2GeO4 ceramic. J. Eur. Cream. Soc. 39, 2354–2359 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    C.C. Li, H.C. Xiang, M.Y. Xu, Y. Tang, L. Fang, Li2AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure. J. Eur. Cream. Soc. 38, 1524–1528 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    J.X. Bi, C.F. Xing, C.H. Yang, H.T. Wu, Phase composition, microstructure and microwave dielectric properties of rock salt structured Li2ZrO3-MgO ceramics. J. Eur. Cream. Soc. 38, 3840–3846 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    A. Manan, Z. Ullah, A.S. Ahmad, A. Ullah, D.F. Khan, A. Hussain, M.U. Khan, Phase microstructure evaluation and microwave dielectric properties of (1-x)Mg0.95Ni0.05Ti0.98Zr0.02O3-xCa0.6La0.8/3TiO3 ceramics. J. Adv. Cream. 7, 72–78 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    L.X. Pang, D. Zhou, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Cream. Soc. 102, 2278–2282 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    H.H. Guo, D. Zhou, W.F. Liu, L.X. Pang, D.W. Wang, J.Z. Su, Z.M. Qi, Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics. J. Am. Cream. Soc. 103, 423–431 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    M.J. Wu, Y.C. Zhang, M.Q. Xiang, Synthesis, characterization and dielectric properties of a novel temperature stable (1-x)CoTiNb2O8-xZnNb2O6 ceramic. J. Adv. Cream. 8, 228–237 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    X.L. Chen, X. Li, H.F. Zhou, J. Sun, X.X. Li, X. Yan, C.C. Sun, J.P. Shi, Phase evolution, microstructure, electric properties of (Ba1-xBi0.67xNa0.33x)(Ti1-xBi0.33xSn0.67x)O3 ceramics. J. Adv. Cream. 8, 427–437 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    K. Cheng, C.C. Li, C.Z. Yin, Y. Tang, Y.H. Sun, L. Fang, Effects of Sr2+ substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of Ba3-xSrx(VO4)2 solid solutions. J. Eur. Cream. Soc. 39, 3738–3743 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    X.Q. Song, W. Lei, Y.Y. Zhou, T. Chen, S.W. Ta, Z.X. Fu, W.Z. Lu, Ultra-low fired fluoride composite microwave dielectric ceramics and their application for BaCuSi2O6-based LTCC. J. Am. Cream. Soc. 103, 1140–1148 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    H.I. Hsiang, C.C. Chen, S.Y. Yang, Microwave dielectric properties of Ca0.7Nd0.2TiO3 ceramic-filled CaO-B2O3-SiO2 glass for LTCC applications. J. Adv. Cream. 8, 345–351 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, Novel water-assisting low firing MoO3 microwave dielectric ceramics. J. Eur. Ceram. Soc. 39, 2374–2378 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    S.Z. Hao, D. Zhou, L.X. Pang, The spectra analysis and microwave dielectric properties of [Ca0.55(Sm1-xBix)0.3]MoO4 ceramics. J. Am. Ceram. Soc. 102, 3103–3109 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    H.H. Guo, D. Zhou, L.X. Pang, Z.M. Qi, Microwave dielectric properties of low firing temperature stable scheelite structured (Ca, Bi)(Mo, V)O4 solid solution ceramics for LTCC applications. J. Eur. Cream. Soc. 39, 2365–2373 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn)AMoO4 compounds. J. Eur. Ceram. Soc. 27, 3063–3067 (2007)

    CAS  Article  Google Scholar 

  16. 16.

    W.B. Li, D. Zhou, H.H. Xi, L.X. Pang, X. Yao, Structure, infrared reflectivity and microwave dielectric properties of (Na0.5La0.5)MoO4-(Na0.5Bi0.5)MoO4 ceramics. J. Am. Ceram. Soc. 99, 2083–2088 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    Y.H. Zhang, H.T. Wu, Crystal structure and microwave dielectric properties of La2(Zr1-xTix)3(MoO4)9(0 ≤ x≤0.1) ceramics. J. Am. Cream. Soc. 102, 4092–4102 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    W.Q. Liu, R.Z. Zuo, A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. J. Eur. Ceram. Soc. 38, 339–342 (2018)

    Article  Google Scholar 

  19. 19.

    W.Q. Liu, R.Z. Zuo, Low temperature fired Ln2Zr3(MoO4)9 (Ln = Sm, Nd) microwave dielectric ceramics. Ceram. Int. 43, 17229–17232 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    Y.H. Zhang, J.J. Sun, N. Dai, Z.C. Wu, H.T. Wu, C.H. Yang, Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J. Eur. Cream. Soc. 39, 1127–1131 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    C.F. Xing, B. Wu, J. Bao, H.T. Wu, Y.Y. Zhou, Crystal structure, infrared spectra and microwave dielectric properties of a novel low-firing Gd2Zr3(MoO4)9 ceramic. Ceram. Int. 45, 22207–22214 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    B.J. Tao, C.F. Xing, W.F. Wang, H.T. Wu, Y.Y. Zhou, A novel Ce2Zr3(MoO4)9 microwave dielectric ceramic with ultra-low firing temperature. Ceram. Int. 45, 24675–24683 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    C.F. Xing, Y.H. Zhang, B.J. Tao, H.T. Wu, Y.Y. Zhou, Crystal structure, infrared spectra and microwave dielectric properties of low-firing La2Zr3(MoO4)9 ceramics prepared by reaction-sintering process. Ceram. Int. 45, 22376–22382 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)

    CAS  Article  Google Scholar 

  25. 25.

    E.F. Xue, S.Y. Zhang, Calculation of the nonlinear optical coefficient of the NdAl3(BO3)4 crystal. J. Phys. Condens. Matter 8, 1949–1956 (1996)

    CAS  Article  Google Scholar 

  26. 26.

    Z.J. Wu, Q.B. Meng, S.Y. Zhang, Semi empirical study on the valences of Cu and bond covalency in Y1−xCaxBa2Cu3O6+y. Phys. Rev. B 58, 958–962 (1998)

    CAS  Article  Google Scholar 

  27. 27.

    D.V. Berkov, Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J. Phys. Condens. Matter 10, 85–88 (1998)

    Article  Google Scholar 

  28. 28.

    P. Zhang, Y.G. Zhao, X.Y. Wang, The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nd(Nb1-xSbx)O4 ceramics. Dalton Trans. 44, 10932–10938 (2015)

    CAS  Article  Google Scholar 

  29. 29.

    D. Zhou, W.B. Li, H.H. Xi, L.X. Pang, G.S. Pang, Phase composition, crystal structure, infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO4-YVO4 system. J. Mater. Chem. C 3, 2582–2588 (2015)

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation (No. 51972143).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Xiaomeng Ma conceived and designed the study, wrote the paper. Yuping zhang, Xiaomeng Ma, Congyi Li and Ziijia Fan performed the experiments. Haitao Wu and Zhiliang Zhang reviewed and edited the manuscript.

Corresponding authors

Correspondence to Haitao Wu or Zhiliang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Li, C., Fan, Z. et al. Crystal structure, infrared spectra, and microwave dielectric properties of low-firing Nd2Zr3(MoO4)9 ceramics prepared by reaction-sintering process. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03812-x

Download citation