Extremely stretchable strain sensors with ultra-high sensitivity based on carbon nanotubes and graphene for human motion detection


Flexible strain sensors have attracted great attention in the field of human health monitoring. Carbon nanotubes (CNTs) and graphene with outstanding electrical conductivity and nanoscale flexibility are often used in the field of stretchable strain sensor. Nevertheless, the combination of high sensitivity and a wide sensing range for stretchable strain sensors seems to be a dilemma. Here, a highly stretchable and sensitive strain sensor was prepared by simply dripping CNTs/graphene conductive composite on a pre-stretching silicon-containing elastomer. Pre-stretching is the key to enhancing the gauge factor (GF) and stretchability of the strain sensor. Compared with the CNTs/graphene coated elastomer without pre-stretching (GF = 4377.23), the GF of the CNTs/graphene coated elastomer with pre-stretching are significantly improved. GF of 28,752.95 (at strain of 23%) is achieved without sacrificing the stretchability at a prestrain coefficient (εpre) of 60%. graphene sheets are introduced as the conducting bridge among the adjacent CNTs to significantly improve the stability of the conductive network, thus forming a structure of line-to-plane electrical conduction pathway to provide the sensor with sufficient flexibility. The strain sensor exhibits excellent tensile properties (up to 400% strain) and ultra-high relative resistance change (ΔR/R0 = 14,719.41) over a wide sensing range (approximately 100% strain) with high durability and repeatability. The pre-stretching CNTs/graphene coated elastomer was then assembled at human joints for detection. The result shows that the strain sensor demonstrates potential applications in wearable electronic products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    S. Chen, R. Wu, P. Li et al., ACS Appl. Mater. Interfaces 10, 37760 (2018). https://doi.org/10.1021/acsami.8b16591

    CAS  Article  Google Scholar 

  2. 2.

    J. Ge, L. Sun, F.-R. Zhang et al., Adv. Mater. 28, 722 (2016). https://doi.org/10.1002/adma.201504239

    CAS  Article  Google Scholar 

  3. 3.

    M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater. 26, 1678 (2016). https://doi.org/10.1002/adfm.201504755

    CAS  Article  Google Scholar 

  4. 4.

    J. Gao, X. Wang, W. Zhai et al., ACS Appl. Mater. Interfaces 10, 34592 (2018). https://doi.org/10.1021/acsami.8b11527

    CAS  Article  Google Scholar 

  5. 5.

    C.H. Gong, Y.X. Zhang, W. Chen et al., Adv. Sci. (2017). https://doi.org/10.1002/advs.201700231

    Article  Google Scholar 

  6. 6.

    M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 8, 5154 (2014). https://doi.org/10.1021/nn501204t

    CAS  Article  Google Scholar 

  7. 7.

    L. Ge, X.L. Gong, Y. Wang, S.H. Xuan, Compos. Sci. Technol. 135, 92 (2016). https://doi.org/10.1016/j.compscitech.2016.09.015

    CAS  Article  Google Scholar 

  8. 8.

    S.J. Kim, S. Mondal, B.K. Min, C.G. Choi, ACS Appl. Mater. Interfaces 10, 36377 (2018). https://doi.org/10.1021/acsami.8b11233

    CAS  Article  Google Scholar 

  9. 9.

    S. Kumar, B.G. Falzon, S.C. Hawkins, Carbon 149, 380 (2019). https://doi.org/10.1016/j.carbon.2019.04.044

    CAS  Article  Google Scholar 

  10. 10.

    X. Liu, W. Liu, Q. Xia, J. Feng, Y. Qiu, F. Xu, Composites A 121, 123 (2019). https://doi.org/10.1016/j.compositesa.2019.03.015

    CAS  Article  Google Scholar 

  11. 11.

    G. Shi, Z. Zhao, J.-H. Pai et al., Adv. Funct. Mater. 26, 7614 (2016). https://doi.org/10.1002/adfm.201602619

    CAS  Article  Google Scholar 

  12. 12.

    J. Zhou, X. Xu, H. Yu, G. Lubineau, Nanoscale 9, 604 (2017). https://doi.org/10.1039/c6nr08096k

    CAS  Article  Google Scholar 

  13. 13.

    Y. Wang, Y. Jia, Y. Zhou et al., J. Mater. Chem. C 6, 8160 (2018). https://doi.org/10.1039/c8tc02702a

    CAS  Article  Google Scholar 

  14. 14.

    H. Hosseini, M. Kokabi, S.M. Mousavi, Carbohydr. Polym. 201, 228 (2018). https://doi.org/10.1016/j.carbpol.2018.08.054

    CAS  Article  Google Scholar 

  15. 15.

    Y. Pang, H. Tian, L. Tao et al., ACS Appl. Mater. Interfaces 8, 26458 (2016). https://doi.org/10.1021/acsami.6b08172

    CAS  Article  Google Scholar 

  16. 16.

    C.H. Gong, K. Hu, X.P. Wang et al., Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706559

    Article  Google Scholar 

  17. 17.

    M.S. Sadi, M. Yang, L. Luo, D. Cheng, G. Cai, X. Wang, Cellulose 26, 6179 (2019). https://doi.org/10.1007/s10570-019-02526-6

    CAS  Article  Google Scholar 

  18. 18.

    Z. Tang, S. Jia, F. Wang et al., ACS Appl. Mater. Interfaces 10, 6624 (2018). https://doi.org/10.1021/acsami.7b18677

    CAS  Article  Google Scholar 

  19. 19.

    Z. Cao, R. Wang, T. He, F. Xu, J. Sun, ACS Appl. Mater. Interfaces 10, 14087 (2018). https://doi.org/10.1021/acsami.7b19699

    CAS  Article  Google Scholar 

  20. 20.

    Y. Cheng, R. Wang, J. Sun, L. Gao, Adv. Mater. 27, 7365 (2015). https://doi.org/10.1002/adma.201503558

    CAS  Article  Google Scholar 

  21. 21.

    B. Yin, Y. Wen, T. Hong et al., ACS Appl. Mater. Interfaces 9, 32054 (2017). https://doi.org/10.1021/acsami.7b09652

    CAS  Article  Google Scholar 

  22. 22.

    X. Wang, S. Meng, M. Tebyetekerwa et al., Composites A 105, 291 (2018). https://doi.org/10.1016/j.compositesa.2017.11.027

    CAS  Article  Google Scholar 

  23. 23.

    D. Liu, Q. Shi, S. Jin, Y. Shao, J. Huang, InfoMat (2019). https://doi.org/10.1002/inf2.12036

    Article  Google Scholar 

  24. 24.

    P.C. Zhao, M.J. Ni, Y.T. Xu et al., Sens. Actuators B (2019). https://doi.org/10.1016/j.snb.2019.126997

    Article  Google Scholar 

  25. 25.

    X. Zhao, L.L. Xu, Q. Chen et al., Adv. Mater. Technol. (2019). https://doi.org/10.1002/admt.201900443

    Article  Google Scholar 

  26. 26.

    S. Pyo, J. Choi, J. Kim, Adv. Electron. Mater. 5, 20 (2019). https://doi.org/10.1002/aelm.201800737

    CAS  Article  Google Scholar 

  27. 27.

    X. Chen, J. Zhu, Q. Xi, W. Yang, Sens. Actuators B 161, 648 (2012). https://doi.org/10.1016/j.snb.2011.10.085

    CAS  Article  Google Scholar 

  28. 28.

    F. Zhang, Y. Feng, M. Qin et al., Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201901383

    Article  Google Scholar 

  29. 29.

    L. Zhao, K. Wang, W. Wei, L. Wang, W. Han, InfoMat 1, 407 (2019). https://doi.org/10.1002/inf2.12032

    Article  Google Scholar 

  30. 30.

    L.H. Li, H.Y. Xiang, Y. Xiong et al., Adv. Sci. (2018). https://doi.org/10.1002/advs.201800558

    Article  Google Scholar 

  31. 31.

    J. Gao, B. Li, X. Huang et al., Chem. Eng. J. 373, 298 (2019). https://doi.org/10.1016/j.cej.2019.05.045

    CAS  Article  Google Scholar 

  32. 32.

    J. Zhou, X. Xu, Y. Xin, G. Lubineau, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201705591

    Article  Google Scholar 

  33. 33.

    X. Li, T. Hua, B. Xu, Carbon 118, 686 (2017). https://doi.org/10.1016/j.carbon.2017.04.002

    CAS  Article  Google Scholar 

  34. 34.

    S. Aziz, S.-H. Chang, Compos. Sci. Technol. 163, 1 (2018). https://doi.org/10.1016/j.compscitech.2018.05.012

    CAS  Article  Google Scholar 

  35. 35.

    L. Zhang, H. Kou, Q. Tan, G. Liu, W. Zhang, J. Xiong, J. Phys. D (2019). https://doi.org/10.1088/1361-6463/ab2c78

    Article  Google Scholar 

  36. 36.

    R. Xu, Y. Lu, C. Jiang et al., ACS Appl. Mater. Interfaces. 6, 13455 (2014). https://doi.org/10.1021/am502208g

    CAS  Article  Google Scholar 

  37. 37.

    X. Peng, K. Wu, Y. Hu et al., J. Mater. Chem. A 6, 23550 (2018). https://doi.org/10.1039/c8ta09322a

    CAS  Article  Google Scholar 

  38. 38.

    Q. Liu, J. Chen, Y. Li, G. Shi, ACS Nano 10, 7901 (2016). https://doi.org/10.1021/acsnano.6b03813

    CAS  Article  Google Scholar 

  39. 39.

    Y. Huang, X. He, L. Gao, Y. Wang, C. Liu, P. Liu, J. Mater. Sci. Mater. Electron. 28, 9495 (2017). https://doi.org/10.1007/s10854-017-6693-0

    CAS  Article  Google Scholar 

  40. 40.

    D. Kang, P.V. Pikhitsa, Y.W. Choi et al., Nature 516, 222 (2014). https://doi.org/10.1038/nature14002

    CAS  Article  Google Scholar 

  41. 41.

    S. Jung, J. Lee, T. Hyeon, M. Lee, D.-H. Kim, Adv. Mater. 26, 6329 (2014). https://doi.org/10.1002/adma.201402439

    CAS  Article  Google Scholar 

  42. 42.

    J. Kim, M. Lee, H.J. Shim et al., Nat. Commun. (2014). https://doi.org/10.1038/ncomms6747

    Article  Google Scholar 

  43. 43.

    Y. Zheng, Y. Li, K. Dai et al., Compos. Sci. Technol. 156, 276 (2018). https://doi.org/10.1016/j.compscitech.2018.01.019

    CAS  Article  Google Scholar 

  44. 44.

    Y. Chen, L. Hu, C. Li et al., InfoMat (2020). https://doi.org/10.1002/inf2.12075

    Article  Google Scholar 

  45. 45.

    G. Cai, J. Wang, K. Qian, J. Chen, S. Li, P.S. Lee, Adv. Sci. 4, 1600190 (2017). https://doi.org/10.1002/advs.201600190

    CAS  Article  Google Scholar 

  46. 46.

    L. Duan, D.R. D'Hooge, M. Spoerk, P. Cornillie, L. Cardon, ACS Appl. Mater. Interfaces 10, 22678 (2018). https://doi.org/10.1021/acsami.8b03967

    CAS  Article  Google Scholar 

  47. 47.

    M. Jian, K. Xia, Q. Wang et al., Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201606066

    Article  Google Scholar 

Download references


This work was financially supported by The National Natural Science Foundation of China and The Civil Aviation Administration of China (No. U1833118).

Author information



Corresponding author

Correspondence to Ronghui Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tang, H., Li, A. et al. Extremely stretchable strain sensors with ultra-high sensitivity based on carbon nanotubes and graphene for human motion detection. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03811-y

Download citation