Simultaneous and sensitive detection of dopamine and uric acid based on cobalt oxide-decorated graphene oxide composite

Abstract

We demonstrate the simply prepared Co3O4 microsphere-decorated graphene oxide nanosheets (Co3O4/GO) modified electrode towards the single and simultaneous determination of dopamine (DA) and uric acid (UA). Various analytical techniques characterized the physicochemical properties of Co3O4/GO hybrid composite and EIS, CV, and DPV used to analyze the electrochemical characterization. This result indicates the simply prepared hybrid composite was confirmed the formation of Co3O4 has a spherical shape with an anchored surface of GO nanosheets. The proposed sensor has good electron transfer properties and excellent cycling stability. The detection potential difference between DA and UA is + 0.216 V. The electrooxidation response of modified electrode exhibits a wide linear range of DA and UA concentration from 0.2 → 1221 and 0.04 → 1217.2 µM with low detection limits of 0.0874 µM and 0.0131 µM, respectively. Besides, the fabricated sensor has high selectivity, excellent storage stability, reproducibility, and repeatability. Finally, the practical applicability of the contracted sensor was evaluated individual and simultaneous detection of DA and UA in human urine samples with satisfactory results.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K. Pramoda, K. Moses, U. Maitra, C.N.R. Rao, Electroanalysis 27, 1892–1898 (2015)

    CAS  Google Scholar 

  2. 2.

    X. Guo, H. Yue, S. Song, S. Huang, X. Gao, H. Chen, P. Wu, T. Zhang, Z. Wang, Microchem. J. 154, 104527 (2020)

    CAS  Google Scholar 

  3. 3.

    C.L. Sun, C.T. Chang, H.H. Lee, J. Zhou, J. Wang, T.K. Sham, W.F. Pong, ACS Nano 5, 7788–7795 (2011)

    CAS  Google Scholar 

  4. 4.

    S. Immanuel, T.K. Aparna, R. Sivasubramanian, Surf. Interfaces 14, 82–91 (2019)

    CAS  Google Scholar 

  5. 5.

    K. Zhou, D. Shen, X. Li, Y. Chen, L. Hou, Y. Zhang, J. Sha, Talanta 209, 120507 (2020)

    CAS  Google Scholar 

  6. 6.

    A. Balamurugan, S.M. Chen, Anal. Chim. Acta 596, 92–98 (2007)

    CAS  Google Scholar 

  7. 7.

    S. Ulubay, Z. Dursun, Talanta 80, 1461–1466 (2010)

    CAS  Google Scholar 

  8. 8.

    T. Thomas, R.J. Mascarenhas, C. Nethravathi, M. Rajamathi, B.K. Swamy, J. Electroanal. Chem. 659, 113–119 (2011)

    CAS  Google Scholar 

  9. 9.

    L. Xiao, L. Jia, S. Zhao, X. Tang, C. Zhu, H. Huang, J. Jiang, M. Li, J. Electroanal. Chem. 858, 113823 (2020)

    CAS  Google Scholar 

  10. 10.

    L. Zhang, C. Liu, Q. Wang, X. Wang, S. Wang, Microchim. Acta 187, 149 (2020)

    CAS  Google Scholar 

  11. 11.

    K. Krishnamoorthy, V. Sudha, S.M.S. Kumar, R. Thangamuthu, J. Alloys Compd. 748, 338–347 (2018)

    CAS  Google Scholar 

  12. 12.

    M.M. Rahman, N.S. Lopa, M.J. Ju, J.J. Lee, J. Electroanal. Chem. 792, 54–60 (2017)

    CAS  Google Scholar 

  13. 13.

    N. Li, J. Guo, B. Liu, Y. Yu, H. Cui, L. Mao, Y. Lin, Anal. Chim. Acta 645, 48–55 (2009)

    CAS  Google Scholar 

  14. 14.

    Y. Teng, X. Jia, J. Li, E. Wang, Anal. Chem. 87, 4897–4902 (2015)

    CAS  Google Scholar 

  15. 15.

    A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, Analyst 134, 1692–1698 (2009)

    CAS  Google Scholar 

  16. 16.

    M.Z. Kassaee, E. Motamedi, M. Majdi, Chem. Eng. J. 172, 540–549 (2011)

    CAS  Google Scholar 

  17. 17.

    S. Muthumariappan, C. Vedhi, IOSR J. Appl. Chem. 10, 55–64 (2017)

    CAS  Google Scholar 

  18. 18.

    R. Thangarasu, V.D. Victor, M. Alagumuthu, Anal. Bioanal. Electrochem. 11, 427–447 (2019)

    CAS  Google Scholar 

  19. 19.

    Z.G. Liu, X. Chen, J.H. Liu, X.J. Huang, Electrochem. commun. 30, 59–62 (2013)

    Google Scholar 

  20. 20.

    K.M. Zeinu, H. Hou, B. Liu, X. Yuan, L. Huang, X. Zhu, J. Hu, J. Yang, S. Liang, X. Wu, J. Mater. Chem. A 4, 13967–13979 (2016)

    CAS  Google Scholar 

  21. 21.

    W.D. Zhang, J. Chen, L.C. Jiang, Y.X. Yu, J.Q. Zhang, Microchim. Acta 168, 259–265 (2010)

    Google Scholar 

  22. 22.

    S. Dubey, J. Kumar, A. Kumar, Y.C. Sharma, Adv. Powder Technol. 29, 2583–2590 (2018)

    CAS  Google Scholar 

  23. 23.

    Y. Ichiyanagi, S. Yamada, Polyhedron 24, 2813–2816 (2005)

    CAS  Google Scholar 

  24. 24.

    X.H. Xia, J.P. Tu, J. Zhang, J.Y. Xiang, X.L. Wang, X.B. Zhao, Sol. Energy Mater. Sol. Cells 94, 386–389 (2010)

    CAS  Google Scholar 

  25. 25.

    C. Lai, Y. Sun, B. Lin, Mater. Today Energy 13, 342–352 (2019)

    Google Scholar 

  26. 26.

    J. Ma, A. Manthiram, RSC Adv. 2, 3187–3189 (2012)

    CAS  Google Scholar 

  27. 27.

    A.S. Vijayanandan, R.S.K. Valappil, R.M. Balakrishnan, Sustain. Energy Technol. Assess. 37, 100598 (2020)

    Google Scholar 

  28. 28.

    J. Rosen, G.S. Hutchings, F. Jiao, JACS 135, 4516–4521 (2013)

    CAS  Google Scholar 

  29. 29.

    M. Venu, V.K.G.S. Agarwa, S. Venkateswarlu, G. Madhavi, Int. J. Electrochem. Sci. 13, 11702–11719 (2018)

    CAS  Google Scholar 

  30. 30.

    A.E. Vilian, B. Dinesh, M. Rethinasabapathy, S.K. Hwang, C.S. Jin, Y.S. Huh, Y.K. Han, J. Mater. Chem. A 6, 14367–14379 (2018)

    CAS  Google Scholar 

  31. 31.

    H. Wang, R. Li, Z. Li, Electrochim. Acta 255, 323–334 (2017)

    CAS  Google Scholar 

  32. 32.

    B. Çakıroğlu, M. Özacar, Biosens. Bioelectron. 119, 34–41 (2018)

    Google Scholar 

  33. 33.

    G. Dai, P. Lu, Y. Liang, Y. Lei, J. Chin. Chem. Soc. 60, 366–370 (2013)

    CAS  Google Scholar 

  34. 34.

    P. Manivel, M. Dhakshnamoorthy, A. Balamurugan, N. Ponpandian, D. Mangalaraj, C. Viswanathan, RSC Adv. 3, 14428–14437 (2013)

    CAS  Google Scholar 

  35. 35.

    D. Li, M. Liu, Y. Zhan, Q. Su, Y. Zhang, D. Zhang, Microchim. Acta 187, 1–10 (2020)

    Google Scholar 

  36. 36.

    F.M. Liu, Y.Q. Du, Y.M. Cheng, W. Yin, C.J. Hou, D.Q. Huo, C. Chen, H.B. Fa, J. Solid State Electrochem. 20, 599–607 (2016)

    CAS  Google Scholar 

  37. 37.

    Z. Zhao, J. Zhang, W. Wang, Y. Sun, P. Li, J. Hu, L. Chen, W. Gong, Appl. Surf. Sci. 485, 274–282 (2019)

    CAS  Google Scholar 

  38. 38.

    B. Hu, Y. Liu, Z.W. Wang, Y. Song, M. Wang, Z. Zhang, C.S. Liu, Appl. Surf. Sci. 441, 694–707 (2018)

    CAS  Google Scholar 

  39. 39.

    T. Priya, N. Dhanalakshmi, S. Thennarasu, N. Thinakaran, Carbohydr. Polym. 182, 199–206 (2018)

    CAS  Google Scholar 

  40. 40.

    S. Ramki, P. Balasubramanian, S.M. Chen, T.W. Chen, T.W. Tseng, B.S. Lou, Int. J. Electrochem. Sci. 13, 1241–1249 (2018)

    CAS  Google Scholar 

  41. 41.

    P. Jing, P. Wang, M. Liu, W. Gao, Y. Cui, Z. Wang, Y. Pu, J. Alloys Compd. 774, 236–243 (2019)

    CAS  Google Scholar 

  42. 42.

    Y. Li, D. Pan, M. Zhang, J. Xie, Z. Yan, RSC Adv. 6, 48357–48364 (2016)

    CAS  Google Scholar 

  43. 43.

    J.S. Chung, S.H. Hur, Sens. Actuators B 223, 76–82 (2016)

    Google Scholar 

  44. 44.

    M. Han, W.L. Zhang, N.E. Shi, J.H. Li, Z. Xu, Chin. J. Inorg. Chem. 24, 797 (2008)

    CAS  Google Scholar 

  45. 45.

    P. Veerakumar, A. Sangili, S.M. Chen, A. Pandikumar, K.C. Lin, ACS Sustain Chem. Eng. 8, 3591–3605 (2020)

    CAS  Google Scholar 

  46. 46.

    M. Baro, P. Nayak, T.T. Baby, S. Ramaprabhu, J. Mater. Chem. A 1, 482–486 (2013)

    CAS  Google Scholar 

  47. 47.

    T. Priya, N. Dhanalakshmi, S. Thennarasu, N. Thinakaran, Carbohydr. Polym 182, 199–206 (2018)

    CAS  Google Scholar 

  48. 48.

    H. Huang, Y. Yue, Z. Chen, Y. Chen, S. Wu, J. Liao, S. Liu, H.R. Wen, Microchim. Acta 186, 189 (2019)

    Google Scholar 

  49. 49.

    H. Yang, J. Zhao, M. Qiu, P. Sun, D. Han, L. Niu, G. Cui, Biosens. Bioelectron. 124, 191–198 (2019)

    Google Scholar 

  50. 50.

    C. Wang, J. Du, H. Wang, C.E. Zou, F. Jiang, P. Yang, Y. Du, Sens. Actuators B Chem. 204, 302–309 (2014)

    CAS  Google Scholar 

  51. 51.

    D. Kong, Q. Zhuang, Y. Han, L. Xu, Z. Wang, L. Jiang, J. Su, C.H. Lu, Y. Chi, Talanta 185, 203–212 (2018)

    CAS  Google Scholar 

  52. 52.

    L. Fu, A. Wang, G. Lai, W. Su, F. Malherbe, J. Yu, C.T. Lin, A. Yu, Talanta 180, 248–253 (2018)

    CAS  Google Scholar 

  53. 53.

    X. Zhang, Y.C. Zhang, L.X. Ma, Sens. Actuators B 227, 488–496 (2016)

    CAS  Google Scholar 

  54. 54.

    Y. Li, H. Lin, H. Peng, R. Qi, C. Luo, Microchim. Acta 183, 2517–2523 (2016)

    CAS  Google Scholar 

  55. 55.

    X. Liu, L. Zhang, S. Wei, S. Chen, X. Ou, Q. Lu, Biosens. Bioelectron. 57, 232–238 (2014)

    CAS  Google Scholar 

  56. 56.

    K.C. Lin, T.H. Tsai, S.M. Chen, Biosens. Bioelectron. 26, 608–614 (2010)

    CAS  Google Scholar 

  57. 57.

    M. Mallesha, R. Manjunatha, C. Nethravathi, G.S. Suresh, M. Rajamathi, J.S. Melo, T.V. Venkatesha, Bioelectrochem. 81, 104–108 (2011)

    CAS  Google Scholar 

  58. 58.

    T.K. Aparna, R. Sivasubramanian, M.A. Dar, J. Alloys Compd. 741, 1130–1141 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of Science and Technology supported the work, Taiwan through Contract No. MOST 107-2113-M-027-005-MY3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1703 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manjula, N., Vinothkumar, V., Chen, S. et al. Simultaneous and sensitive detection of dopamine and uric acid based on cobalt oxide-decorated graphene oxide composite. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03810-z

Download citation