Synthesis of nickel sulfide–graphene oxide composite microflower structures to enhance supercapacitor performance

Abstract

NixSy in various crystal phases (NiS, NiS2, and Ni3S4) was synthesized on thermally reduced graphene oxide (TRGO) by a one-step hydrothermal process. Microstructures and morphologies of as-prepared NixSy–TRGO composites were characterized. NixSy was formed as microflowers with average size of 1.1–2.3 µm, which grew homogeneously on the curved TRGO nanosheets. Electrochemical performance of NixSy–TRGO was revealed with high specific capacitance of 1602.2 F g−1 at 1 A g−1 and favorable cycling retention of 90.81% after 3000 cycles at 5 A g−1. An asymmetric supercapacitor device based on NixSy–TRGO||TRGO exhibited a superior energy density of 39.78 Wh kg−1 at the power density of 0.75 kW kg−1 with an cycling stability of 91.2% capacitance retention after 3000 cycles. Thus, the as-prepared NixSy–TRGO could be an advanced supercapacitor electrode material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    D.P. Dubal, N.R. Chodankar, D.H. Kim, P.G. Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018)

    CAS  Google Scholar 

  2. 2.

    Y.N. Meng, K. Wang, Y.J. Zhan, Z.X. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater. 25, 6985–6990 (2013)

    CAS  Google Scholar 

  3. 3.

    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4269 (2004)

    CAS  Google Scholar 

  4. 4.

    G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    CAS  Google Scholar 

  5. 5.

    Z.S. Wu, Y. Sun, Y.Z. Tan, S.B. Yang, X.L. Feng, K. Mullen, Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134, 19532–19535 (2012)

    CAS  Google Scholar 

  6. 6.

    L.D. Feng, Y.F. Zhu, H.Y. Ding, C.Y. Ni, Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J. Power Sources 267, 430–444 (2014)

    CAS  Google Scholar 

  7. 7.

    Y. Huang, J.Y. Tao, W.J. Meng, M.S. Zhu, Y. Huang, Y.Q. Fu, Y.H. Gao, C.Y. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518–525 (2015)

    CAS  Google Scholar 

  8. 8.

    X.Y. He, R.M. Li, J.Y. Liu, Q. Liu, R.R. Chen, D.L. Song, J. Wang, Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors. Chem. Eng. J. 334, 1573–1583 (2018)

    CAS  Google Scholar 

  9. 9.

    H. Pang, S.M. Wang, G.C. Li, Y.H. Ma, J. Li, X.X. Li, L. Zhang, J.S. Zhang, H.H. Zheng, Cu superstructures fabricated using tree leaves and Cu–MnO2 superstructures for high performance supercapacitors. J. Mater. Chem. A 1, 5053–5060 (2013)

    CAS  Google Scholar 

  10. 10.

    J. Zhao, Z.J. Li, M. Zhang, A. Meng, Q.D. Li, Direct growth of ultrathin NiCo2O4/NiO nanosheets on SiC nanowires as a free-standing advanced electrode for high-performance asymmetric supercapacitors. ACS Sustain. Chem. Eng. 4, 3598–3608 (2016)

    CAS  Google Scholar 

  11. 11.

    R.M. Kore, B.J. Lokhande, A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloys Compd. 725, 129–138 (2017)

    CAS  Google Scholar 

  12. 12.

    X.J. Wei, Y.H. Li, Y. Zhan, H.R. Peng, M. Zhou, Y.Q. Ou, Y.B. Yang, Y.H. Zhang, P. Xiao, Metal–organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chem. Eng. J. 341, 618–627 (2018)

    CAS  Google Scholar 

  13. 13.

    H.L. Liu, T.T. Yu, D.Q. Su, Z.H. Tang, J.H. Zhang, Y.J. Liu, A.H. Yuan, Q.H. Kong, Ultrathin Ni–Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceram. Int. 43, 14395–14400 (2017)

    CAS  Google Scholar 

  14. 14.

    Y. Qian, R. Liu, Q.F. Wang, J. Xu, D. Chen, G.Z. Shen, Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. J. Mater. Chem. A 2, 10917–10922 (2014)

    CAS  Google Scholar 

  15. 15.

    J.J. Li, Y.X. Hu, M.C. Liu, L.B. Kong, Y.M. Hu, W. Han, Y.C. Luo, L. Kang, Mechanical alloying synthesis of Ni3S2 nanoparticles as electrode material for pseudocapacitor with excellent performances. J. Alloys Compd. 656, 138–145 (2016)

    CAS  Google Scholar 

  16. 16.

    M.M. Wang, J.Y. Xue, F.M. Zhang, W.L. Ma, H.T. Cu, Growth of aluminum-substituted nickel hydroxide nanoflakes on nickel foam with ultrahigh specific capacitance at high current density. J. Mater. Sci. 50, 2422–2428 (2015)

    CAS  Google Scholar 

  17. 17.

    Z.Y. Peng, L.Y. Gong, J. Huang, Y. Wang, L.C. Tan, Y.W. Chen, Construction of facile ion and electron diffusion by hierarchical core-branch Zn substituted Ni–Co–S nanocomposite for high-performance asymmetric supercapacitors. Carbon 153, 531–538 (2019)

    CAS  Google Scholar 

  18. 18.

    F.L. Lai, J.R. Feng, T. Heil, Z.H. Tian, J. Schmidt, G.C. Wang, M. Oschatz, Partially delocalized charge in Fe-doped NiCo2S4 nanosheet–mesoporous carbon-composites for high-voltage supercapacitors. J. Mater. Chem. A 7, 19342–19347 (2019)

    CAS  Google Scholar 

  19. 19.

    F. Lu, M. Zhou, W.R. Li, Q.H. Weng, C.L. Li, Y.M. Xue, X.F. Jiang, X.H. Zeng, Y. Bando, D. Golberg, Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 26, 313–323 (2016)

    CAS  Google Scholar 

  20. 20.

    T. Zhu, Z.Y. Wang, S.J. Ding, J.S. Chen, X.W. Lou, Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv. 1, 397–400 (2011)

    CAS  Google Scholar 

  21. 21.

    Y. Zhang, J. Xu, Y.J. Zhang, X.Y. Hu, 3D NiS dendritic arrays on nickel foam as binder-free electrodes for supercapacitors. J. Mater. Sci. Mater. Electron. 27, 8599–8605 (2016)

    CAS  Google Scholar 

  22. 22.

    C. Yang, M.J. Shi, Y.Y. Tian, J. Yang, X.F. Song, L.P. Zhao, J. Liu, P. Zhang, L. Gao, Bioinspired pomegranate-like microflowers confining core–shell binary NixSy nanobeads for efficient supercapacitors exhibiting a durable lifespan exceeding 100000 cycles. J. Mater. Chem. A 7, 3432–3442 (2019)

    CAS  Google Scholar 

  23. 23.

    F.P. Wang, G.F. Li, Q.Q. Zhou, J.F. Zheng, C.X. Yang, Q.Z. Wang, One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors. Appl. Surf. Sci. 425, 180–187 (2017)

    CAS  Google Scholar 

  24. 24.

    Z.D.F. Gao, J.W. Yang, J. Huang, C.X. Xiong, Q.L. Yang, A three-dimensional graphene aerogel containing solvent-free polyaniline fluid for high performance supercapacitors. Nanoscale 9, 17710–17716 (2017)

    CAS  Google Scholar 

  25. 25.

    Y. Liu, J. Zhou, J. Tang, W.H. Tang, Three-dimensional, chemically bonded polypyrrole/bacterial cellulose/graphene composites for high-performance supercapacitors. Chem. Mater. 27, 7034–7041 (2015)

    CAS  Google Scholar 

  26. 26.

    W.W. Zhu, X.M. Ou, Z.D. Lu, K.Y. Chen, Y.H. Ling, H.Z. Zhang, Enhanced performance of hierarchical CuS clusters applying TRGO as conductive carrier for supercapacitors. J. Mater. Sci. Mater. Electron. 30, 5760–5770 (2019)

    CAS  Google Scholar 

  27. 27.

    Q.N. Chen, W.X. Chen, J.B. Ye, Z. Wang, J.Y. Lee, l-cysteine-assisted hydrothermal synthesis of nickel disulfide/graphene composite with enhanced electrochemical performance for reversible lithium storage. J. Power Sources 294, 51–58 (2015)

    CAS  Google Scholar 

  28. 28.

    L.Y. Cheng, Y.Y. Hu, L. Ling, D.D. Qiao, S.C. Cui, Z. Jiao, One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@Ni3S4 core/shell submicrospheres for high-performance supercapacitors. Electrochim. Acta 283, 664–675 (2018)

    CAS  Google Scholar 

  29. 29.

    J.Q. Zhou, M. Wang, X. Li, Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors. Appl. Surf. Sci. 462, 444–452 (2018)

    CAS  Google Scholar 

  30. 30.

    S.L. Yang, H.B. Yao, M.R. Gao, S.H. Yu, Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties. CrystEngComm 11, 1383–1390 (2009)

    CAS  Google Scholar 

  31. 31.

    H.Y. Wang, M.M. Liang, D. Duan, W.Y. Shi, Y.Y. Song, Z.B. Sun, Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 350, 523–533 (2018)

    CAS  Google Scholar 

  32. 32.

    Y.J. Ruan, J.J. Jiang, H.Z. Wan, X. Ji, L. Miao, L. Peng, B. Zhang, L. Lv, J. Liu, Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J. Power Sources 301, 122–130 (2016)

    CAS  Google Scholar 

  33. 33.

    S. Nandhini, A.J.C. Mary, G. Muralidharan, Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl. Surf. Sci. 449, 485–491 (2018)

    CAS  Google Scholar 

  34. 34.

    P. Gaikar, S.P. Pawar, R.S. Mane, M. Nuashad, D.V. Shinde, Synthesis of nickel sulfide as a promising electrode material for pseudocapacitor application. RSC Adv. 6, 112589–112593 (2016)

    CAS  Google Scholar 

  35. 35.

    J. Kang, I. Ryu, G. Cheo, G. Kim, S. Yim, Simple fabrication of nickel sulfide nanostructured electrode using alternate dip-coating method and its supercapacitive properties. Int. J. Electrochem. Sci. 12, 9588–9600 (2017)

    CAS  Google Scholar 

  36. 36.

    F. Huang, Y.W. Sui, F.X. Wei, J.Q. Qi, Q.K. Memg, Y.Z. He, Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 29, 2525–2536 (2017)

    Google Scholar 

  37. 37.

    N.S. Muthu, M. Gopalan, Mesoporous nickel sulphide nanostructures for enhanced supercapacitor performance. Appl. Surf. Sci. 480, 186–198 (2019)

    Google Scholar 

  38. 38.

    H. Lin, F. Liu, X. Wang, Y. Ai, Z. Yao, L. Chu, S. Han, X. Zhuang, Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity. Electrochim. Acta 191, 705–715 (2016)

    CAS  Google Scholar 

  39. 39.

    B.J. Reddy, P. Vickraman, A.S. Justin, Asymmetric supercapacitor device performance based on microwave synthesis of N-doped graphene/nickel sulfide nanocomposite. J. Mater. Sci. 54, 6361–6373 (2019)

    CAS  Google Scholar 

  40. 40.

    S. Ahmad, C. Yang, W.Y. Xie, Z.B. Deng, H. Zhang, Y.L. Zhao, X.T. Su, Molten salt-templated synthesis of ternary NiS–NiCo2O4@C composites as high performance catalysts for 4-nitro phenol reduction and supercapacitor. Carbon 158, 912–921 (2020)

    CAS  Google Scholar 

  41. 41.

    Y.Y. Zheng, Y.R. Tian, S.X. Liu, X.Q. Tan, S.M. Wang, Q.P. Guo, J.J. Luo, Z.Y. Li, One-step microwave synthesis of NiO/NiS@CNT nanocomposites for high-cycling-stability supercapacitors. J. Alloys Compd. 806, 170–179 (2019)

    CAS  Google Scholar 

  42. 42.

    B.T. Liu, X.M. Shi, X.Y. Lang, L. Gu, Z. Wen, M. Zhao, Q. Jiang, Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nat. Commun. 9, 1–9 (2018)

    Google Scholar 

  43. 43.

    F. Cai, R. Sun, Y.R. Kang, H.Y. Chen, M.H. Chen, Q.W. Li, One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors. RSC Adv. 5, 23073–23079 (2015)

    CAS  Google Scholar 

  44. 44.

    L. Huang, H.J. Hou, B.C. Liu, K. Zeinu, X.Q. Yuan, X.L. Zhu, X.L. He, L.S. Wu, J.P. Wu, J.K. Yang, Phase-controlled solvothermal synthesis and morphology evolution of nickel sulfide and its pseudocapacitance performance. Ceram. Int. 43, 3080–3088 (2017)

    CAS  Google Scholar 

  45. 45.

    J.L. Xu, L. Zhang, G.C. Xu, Z.P. Sun, C. Zhang, X. Ma, C.L. Qi, L. Zhang, D.Z. Jia, Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors. Appl. Surf. Sci. 434, 112–119 (2018)

    CAS  Google Scholar 

  46. 46.

    N.X. Du, W.J. Zheng, X.C. Li, G.H. He, L. Wang, J.H. Shi, Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem. Eng. J. 323, 415–424 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XKQYMS12) and Open Sharing Fund for the Large-Scale Instruments and Equipments of CUMT.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hanzhuo Zhang or Xuemei Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, M., Zhu, W., Lu, Z. et al. Synthesis of nickel sulfide–graphene oxide composite microflower structures to enhance supercapacitor performance. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03804-x

Download citation