Evaluation of dosimetric properties of Li-codoped MgF2:Tb ceramics


Li-codoped MgF2:Tb ceramics with different Li concentrations (0.01, 0.1, 1, and 3 mol%) were prepared by the spark plasma sintering method, and photoluminescence (PL), scintillation, and dosimetric properties were investigated. Sharp peaks due to 4-4 f transitions of Tb3+ ion were observed in all of PL, scintillation, and thermally-stimulated luminescence (TSL). TSL glow curves confirmed that the TSL intensity was increased by Li-codoping without an increase of QY values. Especially, the TSL intensity was the highest in 1% Li-codoped MgF2:Tb, which was approximately 2.2 times larger than that of MgF2 doped with only Tb. Moreover, It was confirmed that the TSL responses of the 0.01, 0.1 and 1% Li-codoped MgF2:Tb ceramics were very sensitive to irradiation dose and showed a good linearity from 0.01 to 1000 mGy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    D.M. Trombetta, M. Klintefjord, K. Axell, B. Cederwall, Fast neutron- and γ-ray coincidence detection for nuclear security and safeguards applications. Nucl. Instrum. Methods Phys. Res. Sect. A  Accel. Spectrom. Detect. Assoc. Equip. 927, 119–124 (2019). https://doi.org/10.1016/J.NIMA.2019.01.081

    CAS  Article  Google Scholar 

  2. 2.

    H. Song, S.-J. Lee, C. Park, I.S. Kang, K.B. Kim, Y.H. Chung, Feasibility of adjustable-gantry PET system using advanced DOI method, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 953, 163087 (2020). https://doi.org/10.1016/J.NIMA.2019.163087

    CAS  Article  Google Scholar 

  3. 3.

    C.L. Melcher, Scintillators for well logging applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 40–41, 1214–1218 (1989). https://doi.org/10.1016/0168-583X(89)90622-8

    Article  Google Scholar 

  4. 4.

    H. von Seggern, Photostimulable x-ray storage phosphors: a review of present understanding. Brazil. J. Phys. 29, 254–268 (1999). https://doi.org/10.1590/s0103-97331999000200008

    Article  Google Scholar 

  5. 5.

    S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  6. 6.

    S.W.S. McKeever, Optically stimulated luminescence: a brief overview. Radiat. Meas. 46, 1336–1341 (2011). https://doi.org/10.1016/J.RADMEAS.2011.02.016

    CAS  Article  Google Scholar 

  7. 7.

    M.R. Mayhugh, R.W. Christy, N.M. Johnson, Thermoluminescence and color center correlations in dosimetry LiF. J. Appl. Phys. 41, 2968–2976 (1970). https://doi.org/10.1063/1.1659346

    CAS  Article  Google Scholar 

  8. 8.

    C.A. Jayachandran, Calculated effective atomic number and Kerma values for tissue-equivalent and dosimetry materials. Phys. Med. Biol. 16, 617–623 (1971). https://doi.org/10.1088/0031-9155/16/4/005

    CAS  Article  Google Scholar 

  9. 9.

    T. Yanagida, Ionizing radiation induced emission: scintillation and storage-type luminescence. J. Lumin. 169, 544–548 (2016). https://doi.org/10.1016/J.JLUMIN.2015.01.006

    CAS  Article  Google Scholar 

  10. 10.

    T. Yanagida, Y. Fujimoto, K. Watanabe, K. Fukuda, N. Kawaguchi, Y. Miyamoto, H. Nanto, Scintillation and optical stimulated luminescence of Ce-doped CaF2. Radiat. Meas. 71, 162–165 (2014). https://doi.org/10.1016/J.RADMEAS.2014.03.020

    CAS  Article  Google Scholar 

  11. 11.

    A. Lushchik, I. Kudryavtseva, P. Liblik, C. Lushchik, A.I. Nepomnyashchikh, K. Schwartz, Vasil‘chenko, electronic and ionic processes in LiF:  Mg,Ti and LiF single crystals. Radiat. Meas. 43, 157–161 (2008). https://doi.org/10.1016/J.RADMEAS.2007.10.001

    CAS  Article  Google Scholar 

  12. 12.

    L.C. Oliveira, E.G. Yukihara, O. Baffa, MgO:Li,Ce,Sm as a high-sensitivity material for optically stimulated luminescence dosimetry. Sci. Rep. 6, 24348 (2016). https://doi.org/10.1038/srep24348

    CAS  Article  Google Scholar 

  13. 13.

    V. Altunal, V. Guckan, A. Ozdemir, Z. Yegingil, Radiation dosimeter utilizing optically stimulated luminescence of BeO:Na,Tb,Gd ceramics. J. Alloys Compd. 817, 152809 (2020). https://doi.org/10.1016/J.JALLCOM.2019.152809

    Article  Google Scholar 

  14. 14.

    M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat. Phys. Chem. 102, 139–146 (2014). https://doi.org/10.1016/j.radphyschem.2014.04.033

    CAS  Article  Google Scholar 

  15. 15.

    F. Nakamura, T. Kato, G. Okada, N. Kawano, N. Kawaguchi, K. Fukuda, T. Yanagida, Scintillation, dosimeter and optical properties of MgF2 transparent ceramics doped with Gd3+. Mater. Res. Bull. 98, 83–88 (2018). https://doi.org/10.1016/j.materresbull.2017.09.058

    CAS  Article  Google Scholar 

  16. 16.

    F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, T. Yanagida, Scintillation and storage luminescence properties of MgF2 transparent ceramics doped with Ce3+. Opt. Mater. (Amst). 72, 470–475 (2017). https://doi.org/10.1016/j.optmat.2017.06.043

    CAS  Article  Google Scholar 

  17. 17.

    G. Okada, F. Nakamura, N. Kawano, N. Kawaguchi, S. Kasap, T. Yanagida, Radiation-induced luminescence centres in Sm:MgF2 ceramics, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 435, 268–272 (2018). https://doi.org/10.1016/j.nimb.2018.01.032

    CAS  Article  Google Scholar 

  18. 18.

    F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, T. Yanagida, Scintillation and TSL properties of MgF2 transparent ceramics doped with Eu2+ synthesized by spark plasma sintering. J. Alloys Compd. 726, 67–73 (2017). https://doi.org/10.1016/j.jallcom.2017.07.320

    CAS  Article  Google Scholar 

  19. 19.

    F. Nakamura, T. Kato, G. Okada, N. Kawaguchi, K. Fukuda, T. Yanagida, Scintillation, TSL and RPL properties of MgF2 transparent ceramic and single crystal. Ceram. Int. 43, 7211–7215 (2017). https://doi.org/10.1016/j.ceramint.2017.03.009

    CAS  Article  Google Scholar 

  20. 20.

    T. Matsuo, T. Kato, H. Kimura, F. Nakamura, D. Nakauchi, N. Kawaguchi, T. Yanagida, Evaluation of dosimetric properties of Tb-doped MgF2 transparent ceramics. Optik (Stuttg) 203, 163965 (2020). https://doi.org/10.1016/J.IJLEO.2019.163965

    CAS  Article  Google Scholar 

  21. 21.

    T. Yanagida, K. Kamada, Y. Fujimoto, H. Yagi, T. Yanagitani, Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. (Amst). 35, 2480–2485 (2013). https://doi.org/10.1016/j.optmat.2013.07.002

    CAS  Article  Google Scholar 

  22. 22.

    T. Yanagida, Y. Fujimoto, T. Ito, K. Uchiyama, K. Mori, Development of X-ray-induced afterglow characterization system. Appl. Phys. Express 7, 062401 (2014). https://doi.org/10.7567/APEX.7.062401

    CAS  Article  Google Scholar 

  23. 23.

    T. YANAGIDA, Y. FUJIMOTO, N. KAWAGUCHI, S. YANAGIDA, Dosimeter properties of AlN. J. Ceram. Soc. Jpn. 121, 988–991 (2013). https://doi.org/10.2109/jcersj2.121.988

    CAS  Article  Google Scholar 

  24. 24.

    G. Okada, T. Kato, D. Nakauchi, K. Fukuda, T. Yanagida, Photochromism and thermally and optically stimulated luminescences of AlN ceramic plate for UV sensing. Sens. Mater. 28, 897–904 (2016). https://doi.org/10.18494/SAM.2016.1250

    CAS  Article  Google Scholar 

  25. 25.

    A.C. Sutorik, G. Gilde, C. Cooper, J. Wright, C. Hilton, The effect of varied amounts of LiF sintering aid on the transparency of alumina rich spinel ceramic with the composition MgO ·1.5 Al2O3. J. Am. Ceram. Soc. 95, 1807–1810 (2012). https://doi.org/10.1111/j.1551-2916.2012.05217.x

    CAS  Article  Google Scholar 

  26. 26.

    G. Okada, K. Shinozaki, T. Komatsu, N. Kawano, N. Kawaguchi, T. Yanagida, Tb3+-doped BaF2-Al2O3-B2O3 glass and glass-ceramic for radiation measurements. J. Non Cryst. Solids 501, 111–115 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.02.013

    CAS  Article  Google Scholar 

  27. 27.

    A.I. Nepomnyashchikh, E.A. Radzhabov, A.V. Egranov, V.F. Ivashechkin, Luminescence of BaF2–LaF3. Radiat. Meas. 33, 759–762 (2001). https://doi.org/10.1016/S1350-4487(01)00101-9

    CAS  Article  Google Scholar 

  28. 28.

    N. Kawano, T. Kato, G. Okada, N. Kawaguchi, T. Yanagida, Optical, scintillation and dosimeter properties of MgO:Tb translucent ceramics synthesized by the SPS method. Opt. Mater. (Amst). 73, 364–370 (2017). https://doi.org/10.1016/j.optmat.2017.08.025

    CAS  Article  Google Scholar 

  29. 29.

    M. Koshimizu, K. Iwamatsu, M. Taguchi, S. Kurashima, A. Kimura, T. Yanagida, Y. Fujimoto, K. Watanabe, K. Asai, Influence of linear energy transfer on the scintillation decay behavior in a lithium glass scintillator. J. Lumin. 169, 678–681 (2016). https://doi.org/10.1016/j.jlumin.2015.04.015

    CAS  Article  Google Scholar 

  30. 30.

    M. Koshimizu, K. Asai, H. Shibata, Study on diffusion characteristics of the excited carriers in electron-hole plasma in GaAs using high-energy ions. J. Lumin. 94–95, 407–411 (2001). https://doi.org/10.1016/S0022-2313(01)00403-3

    Article  Google Scholar 

  31. 31.

    G. Kitis, J.M. Gomez-Ros, J.W.N. Tuyn, Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D Appl. Phys. 31, 2636–2641 (1998). https://doi.org/10.1088/0022-3727/31/19/037

    CAS  Article  Google Scholar 

  32. 32.

    T. Yanagida, G. Okada, N. Kawaguchi, Ionizing-radiation-induced storage-luminescence for dosimetric applications. J. Lumin. 207, 14–21 (2019). https://doi.org/10.1016/j.jlumin.2018.11.004

    CAS  Article  Google Scholar 

  33. 33.

    From the homepage of Chiyoda Technol Corp. https://www.c-technol.co.jp/eng/e-p_monitoring. Accessed 1 June 2020

Download references


The funding was provided by Grant-in-Aid for Scientific Research A (Grant No. 17H01375), Grant-in-Aid for Scientific Research B (Grant Nos. 18H03468 and 19H03533) and Grant-in-Aid for JSPS Fellows (Grant No. 19J22091).

Author information



Corresponding author

Correspondence to Tatsuya Matsuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsuo, T., Kato, T., Kimura, H. et al. Evaluation of dosimetric properties of Li-codoped MgF2:Tb ceramics. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03789-7

Download citation