Influence of Ag doping on room-temperature TCR of La0.67Sr0.33−xAgxMnO3 polycrystalline ceramics

Abstract

La0.67Sr0.33−xAgxMnO3 (LSAMO, x = 0.00, 0.15, 0.18, 0.19, 0.20, 0.21, and 0.24) polycrystalline ceramics are prepared by the normative sol–gel method at a sintering temperature of 1450 °C for 12 h. The chemical composition, surface morphology, crystal structure, and electrical transport properties of the specimens are systematically studied by means of X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive spectrometry (EDS), X-ray photoemission spectroscopy (XPS), and four-probe method (ρ-T). XRD spectra reveal that all ceramics specimens crystallized in rhombohedron perovskite structure belonging to space group of \({\text{R}}\stackrel{\mathrm{-}}{3}{\text{c}}\). FESEM displays that the grain size first increased and then decreased with the increase of Ag doping. Large grain size could improve the electrical properties of LSAMO ceramics. The element mapping and EDS results show that specimens contain La, Sr, Ag, Mn, and O elements without any impurity. The presence of Ag element has confirmed by XPS spectra, corresponding to XRD and EDS results. By adjusting the Ag content, a wide metal–insulator transition temperature (TMI) in the range from 369.9 K (x = 0.00) to 299.5 K (x = 0.24) has achieved. At x = 0.19, the resistivity temperature coefficient (TCR) value reaches 16.19% K−1 meanwhile the peak temperature of the TCR is 297.43 K (room temperature). The results indicate that Ag doping has a significant changing on the double exchange (DE) effect and plays an important role in improving the electrical transport properties of LSAMO ceramics. Visibly, the addition of Ag as stoichiometric ratio achieves a large TCR at room temperature, which could provide favorable conditions for application in advanced uncooled infrared detectors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    G.M. Gross, R.B. Praus, B. Leibold, H.U. Habermeier, microstructure and X-ray analysis on LaCaMnO thin film. Appl. Surf. Sci. 138–139, 117 (1999)

    Article  Google Scholar 

  2. 2.

    J.L. Bian, Y.J. Seo, G.W. Kim, C.H. Sung, S. Kumar, C.G. Lee, B.H. Koo, Effect of SnO2 addition on the magnetic, transport and magnetoresistance properties of La0.7(CaxSr1-x)0.3MnO3. Curr. Appl. Phys. 11, S297–S300 (2011)

    Article  Google Scholar 

  3. 3.

    D.Y. Cao, Y.Y. Zhang, W.X. Dong, J. Yang, W. Bai, Y. Chen, G.S. Wang, X.L. Dong, X.D. Tang, Structure, magnetic and transport properties of La0.7Ca0.3-xSrxMnO3 thin films by sol-gel method. Ceram. Int. 41, S381–S386 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    A. Bhattacharya, S.J. May, S.G. te Velthuis, M. Warusawithana, X. Zhai, B. Jiang, J.M. Zuo, M.R. Fitzsimmons, S.D. Bader, J.N. Eckstein, Metal-insulator transition and its relation to magnetic structure in (LaMnO3)2n/(SrMnO3)n superlattices. Phys. Rev. Lett. 100, 257203 (2008)

    CAS  Article  Google Scholar 

  5. 5.

    R. Vidya, P. Ravindran, P. Vajeeston, A. Kjekshus, H. Fjellvag, Effect of oxygen stoichiometry on spin, charge, and orbital ordering in manganites. Phys. Rev. B 69, 092405 (2004)

    Article  Google Scholar 

  6. 6.

    H. Fujishiro, Thermal conductivity anomalies around antiferromagnetic order in La0.50Sr0.50MnO3 and Nd0.50Sr0.50MnO3 crystals. Physica B 307, 57–63 (2001)

    CAS  Article  Google Scholar 

  7. 7.

    H.U. Habermeier, Physics and application potential of epitaxial strain in doped rare earth manganites. Phys. B 321, 9–17 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    F.L. Tang, Y.X. Hu, W.J. Lu, K. Chu, Y.D. Feng, C.H. Wu, M. Xu, Spin/orbital coupling and charge ordering in LaMnO3/SrMnO3 superlattice. J. Magn. Magn. Mater. 333, 8–12 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    P. Schlottmann, Spin, charge, orbital and lattice degrees of freedom in quasi-cubic manganites: a brief review. Phys. B 404, 2699–2704 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    L.Z. Cao, B.L. Cheng, S.Y. Wang, Y.L. Zhou, K.J. Jin, H.B. Lu, Z.H. Chen, G.Z. Yang, Dielectric properties of Si-Ba0.5Sr0.5TiO3 composite thin films elaborated by pulsed laser deposition. J. Appl. Phys. 98, 034104–034106 (2005)

    Article  Google Scholar 

  11. 11.

    J.S. Park, Y.P. Lee, J.H. Kang, J. Kim, B.W. Lee, J.Y. Rhee, Electrical transport and magnetic properties of composite ceramics. J. Magn. Magn. Mater. 324, 1234–1238 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    N. Kumar, H. Kishan, A. Rao, V.P.S. Awana, Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1−xFexO3 (0 ≤ x ≤1). J. Alloy Compd. 502, 283–288 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    X. Chen, Q. Chen, F. Jin, X. Liu, H. Zhang, Effect of Ca-doping on the electrical properties of La0.2Nd0.47Sr0.33MnO3 ceramics prepared by sol-gel technique. J. Sol-Gel Sci. Technol. 82, 177–183 (2016)

    Article  Google Scholar 

  14. 14.

    Y. Liu, T. Sun, F. Ji, G. Dong, S. Zhang, X. Yu, Z. Li, Q. Chen, X. Liu, Influence of Ag doping on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 45, 11006–11012 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    R. Tripathi, V.P.S. Awana, H. Kishan, G.L. Bhalla, Search for room temperature high-TCR manganite/silver composites. J. Magn. Magn. Mater. 320, L89–L92 (2008)

    CAS  Article  Google Scholar 

  16. 16.

    T. Sun, Y. Liu, G. Dong, S. Zhang, Z. Li, K. Chu, X. Pu, H. Li, F. Ji, H. Zhang, Q. Chen, X. Liu, La0.67(Ca0.24Sr0.09)MnO3:xAg2O (0 ≤ x ≤ 0.25) composites with improved room-temperature TCR and MR for advanced uncooling infrared bolometers and magnetic sensors. Appl. Surf. Sci. 493, 448–457 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    G. Dong, T. Sun, F. Ji, Y. Liu, S. Zhang, H. Zhang, X. Liu, Polycrystalline La0.845Sr0.155MnO3: Ag ceramics (0 ≤ x ≤ 05) with room-temperature TCR and MR for improved uncooling photoelectric and magnetic devices. Ceram. Int. 45, 12162–12168 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    X. Liu, Y.Z. Yan, Q.M. Chen, H. Zhang, M.G. Cao, S.C. Zhang, P.X. Zhang, High TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Agx polycrystalline composites. Appl. Surf. Sci. 283, 851–855 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    H. Li, K. Chu, X. Pu, T. Sun, G. Dong, Y. Liu, S. Zhang, X. Liu, Electrical transport properties of La0.845Sr0.155MnO3: K (0 ≤ x ≤ 0.2) composites. J. Alloy Compd. 810, 151908 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    C. Zener, interaction between thed-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    CAS  Article  Google Scholar 

  21. 21.

    W.E. Pickett, Electronic magnetic and structural coupling in colossal magnetoresistive (La, Ca)Mn3O. J. Vac. Sci. Technol. B 14, 3136 (1996)

    CAS  Article  Google Scholar 

  22. 22.

    W.E.P.D.J. Singh, Lattice effects in ferromagnetic manganite perovskites. J. Appl. Phys. 83, 7354 (1998)

    CAS  Article  Google Scholar 

  23. 23.

    L. Yu, Y. Wang, P.X. Zhang, H.U. Habermeier, Epitaxial La0.9Ca0.1MnO3 films grown on vicinal cut substrates for the investigation of resistivity and thermoelectric anisotropy. J. Cryst. Growth 322, 41–44 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    D.G. Li, Y.T. Mai, J. Xoing, Y.H. Xiong, Z.L. Liu, C.S. Xiong, Studies on low-field and room-temperature magnetoresistance in La2/3(Ca1-xSrx)1/3MnO3 Perovskites. J. Supercond. Novel Magn. 26, 719–723 (2012)

    Article  Google Scholar 

  25. 25.

    R. Rauer, G. Neuber, J. Kunze, J. Bäckström, M. Rübhausen, T. Walter, K. Dörr, Magneto-optical investigation of spin polarisation of La0.7Ca0.3MnO3 and La0.7Sr0.3MnO3. J. Magn. Magn. Mater. 290–291, 948–951 (2005)

    Article  Google Scholar 

  26. 26.

    M. Nasri, M. Triki, E. Dhahri, P. Lachkar, E.K. Hlil, Structural and magneto-transport properties of (La0.6Ca0.2Sr0.2MnO3)1–x (Sb2O3/CuO)x composites. Ceram. Int. 40, 2023–2028 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    Y. Gao, J. Zhang, X. Fu, G. Cao, H.U. Habermeier, Tuning the magnetic anisotropy in LSMO manganite films through non-magnetic nanoparticles. Progr. Nat. Sci. Mater. Int. 23, 127–132 (2013)

    Article  Google Scholar 

  28. 28.

    Š. Chromik, V. Štrbík, E. Dobročka, T. Roch, A. Rosová, M. Španková, T. Lalinský, G. Vanko, P. Lobotka, M. Ralbovský, P. Choleva, LSMO thin films with high metal-insulator transition temperature on buffered SOI substrates for uncooled microbolometers. Appl. Surf. Sci. 312, 30–33 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    I. Kagomiya, S. Matsumoto, K.I. Kakimoto, H. Ohsato, H. Sakai, Y. Maeda, Controlling temperature coefficient of resistivity in La1-xSrxMnO3 ceramics. Mater. Lett. 63, 2452–2455 (2009)

    CAS  Article  Google Scholar 

  30. 30.

    X. Yu, T. Sun, Q. Chen, Y. Duan, X. Liu, Modulation of room-temperature TCR and MR in La1-xSrxMnO3 polycrystalline ceramics via Sr doping. J. Sol-Gel Sci. Technol. 90, 221 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    T.D.R. Sudharshan Vadnala, P. Pal, S. Asthana, Study of structural effect on Eu-substituted LSMO manganite for high temperature coefficient of resistance. Physica B 448, 277–280 (2014)

    Article  Google Scholar 

  32. 32.

    Z.L. Liu, J. Zhang, K.L. Yao, H.R. Liu, L.H. Jia, H.G. Cheng, Fabrication of polycrystalline La0.67(Sr1-xCdx)0.33MnO3 thin films on Si(100) substrates by sol-gel process. J. Sol-Gel Sci. Technol. 43, 93–97 (2007)

    CAS  Article  Google Scholar 

  33. 33.

    M. Sriondee, W. Dungsuwan, S. Thountom, Synthesis and characterization of Bi0.5(Na1-xKx)0.5TiO3 powders by sol-gel combustion method with glycine fuel. Ceram. Int. 44, S168–S171 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    M.M.S. Sanad, M.M. Rashad, Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. J. Mater. Sci. Mater. Electron. 27, 9034–9043 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    D. Harbaoui, M.M.S. Sanad, C. Rossignol, E.K. Hlil, N. Amdouni, S. Obbade, Synthesis and structural, electrical, and magnetic properties of new iron-aluminum alluaudite phases β-Na2Ni2M(PO4)3 (M = Fe and Al). Inorg. Chem. 56, 13051–13061 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    M.M.S. Sanad, H.A. Abdellatif, E.M. Elnaggar, G.M. El-Kady, M.M. Rashad, Understanding structural, optical, magnetic and electrical performances of Fe-or Co-substituted spinel LiMn1.5Ni0.5O4 cathode materials. Appl. Phys. A 125, 139 (2019)

    Article  Google Scholar 

  37. 37.

    A.Y. Shenouda, M.M.S. Sanad, Synthesis, characterization and electrochemical performance of Li2NixFe1-xSiO4 cathode materials for lithium ion batteries Li2NixFe1-xSiO4 cathode materials for lithium ion batteries. Bull. Mater. Sci. 40, 1055–1060 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    E. Talik, M. Kruczek, H. Sakowska, W. Szyrski, XPS studies of chemically etched surfaces of (La, Sr)(Al, Ta)O3 single crystals. J. Alloy Compd. 361, 282–288 (2003)

    CAS  Article  Google Scholar 

  39. 39.

    K. Chu, T. Sun, Y. Liu, G. Dong, S. Zhang, H. Li, X. Pu, X. Yu, X. Liu, Enhanced room temperature coefficient of resistivity (RT-TCR) and broad metal-insulator transition temperature (TMI) of La0.67Ca0.33-xAgxMnO3 polycrystalline ceramics. Ceram. Int. 45, 17073–17080 (2019)

    CAS  Article  Google Scholar 

  40. 40.

    G. Dong, T. Sun, Y. Liu, S. Zhang, X. Liu, Structural and electrical properties of La0.67(Ca0.3Sr0.03)MnO3 composites prepared with added Ag. J. Alloy Compd. 794, 365 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11674135), the Analysis and Testing Foundation of Kunming University of Science and Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chu, K., Li, H., Pu, X. et al. Influence of Ag doping on room-temperature TCR of La0.67Sr0.33−xAgxMnO3 polycrystalline ceramics. J Mater Sci: Mater Electron 31, 12389–12397 (2020). https://doi.org/10.1007/s10854-020-03785-x

Download citation