Efficient synthesis of dendritic PbTiO3 nanorods by hydrothermal method


The PbTiO3 nanorods were synthesized by a hydrothermal method using 4.4 mol/L ammonia solution as the pH-adjusting agent. The influence of Pb/Ti molar ratio in the Pb–Ti precursors, precursor concentration, reaction temperature, and time on formation of PbTiO3 nanorods was investigated. The dendritic PbTiO3 nanorods were obtained by controlling the process parameters. The preparation of dendritic PbTiO3 nanorods mainly involved two steps: in the first step of formation of PbTiO3 nanorods, the classical nucleation and growth dominates the nanorod growth, and in the second step of formation of dendritic PbTiO3 nanorods, the oriented attachment dominates the dendritic grain growth. The PbTiO3 nanorods grew along the [001] c-axis, and the oriented attachment was along the [001] c-axis to form the dendritic PbTiO3 nanorods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    R. Saterli, P.M. Rorvik, C.C. You, R. Holmestad, T. Tybell, T. Grande, A.T.J. van Helvoort, M.A. Einarsrud, J. Appl. Phys. 108, 124320 (2010)

    Article  Google Scholar 

  2. 2.

    S. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012)

    Article  Google Scholar 

  3. 3.

    T. Shimada, T. Xu, Y. Araki, J. Wang, T. Kitamura, Nano. Lett. 17, 2674 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    H.C. Song, D. Maurya, M. Sanghadasa, W.T. Reynolds, S. Priya, J. Phys. Chem. C 121, 27191 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    D. Fu, H. Suzuki, K. Ishikawa, Phys. Rev. B 62, 3125 (2000)

    CAS  Article  Google Scholar 

  6. 6.

    J. Kim, J. Hong, M. Park, W. Zhe, D. Kim, Y.J. Jang, D.H. Kim, K. No, Adv. Funct. Mater. 21, 4277 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    H. Fujisawa, K. Yamada, M. Igawa, S. Nakashima, M. Shimizu, Jpn. J. Appl. Phys. 51, 9S1 (2012)

    Google Scholar 

  8. 8.

    F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, Cryst. Growth Des. 11, 4129 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, M. Kuwabara, Appl. Phys. Lett. 101, 012901 (2012)

    Article  Google Scholar 

  10. 10.

    X. Yu, H. Wang, Y. Liu, X. Zhou, B. Li, L. Xin, Y. Zhou, H. Shen, J. Mater. Chem. A 1, 2110 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    Y. Yan, B. Sun, D. Ma, J. Mater. Sci. 27, 512 (2016)

    CAS  Google Scholar 

  12. 12.

    Y. Deng, L. Liu, Y. Cheng, C.W. Nan, S. Zhao, Mater. Lett. 57, 1675 (2003)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, J. Alloys Compd. 481, L27 (2009)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Li, H. Sun, N. Wang, W. Fang, Z. Li, Solid State Sci. 37, 18 (2014)

    Article  Google Scholar 

  15. 15.

    S. Cho, J.S. Noh, M.M. Lencka, R.E. Riman, J. Eur. Ceram. Soc. 23, 2323 (2003)

    CAS  Article  Google Scholar 

  16. 16.

    X. Li, Z. Huang, L. Zhang, D. Guo, Electron. Mater. Lett. 14, 610 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    M.C. Gelabert, R.A. Laudise, R.E. Riman, J. Cryst. Growth 197, 195 (1999)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Yang, X. Wang, C. Zhong, C. Sun, L. Li, Appl. Phys. Lett. 92, 122907 (2008)

    Article  Google Scholar 

  19. 19.

    D. Guo, W. Mao, Y. Qin, Z. Huang, C. Wang, Q. Shen, L. Zhang, J. Mater. Sci. 23, 940 (2012)

    CAS  Google Scholar 

  20. 20.

    R. Zhao, M. Li, Z. Ren, Y. Zhu, G. Han, CrystEngComm 20, 448 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    J. Lv, P. Yan, M. Zhao, Y. Sun, F. Shang, G. He, M. Zhang, Z. Sun, J. Alloys Compd. 648, 676 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    R.L. Penn, J.F. Banfield, Science 281, 969 (1998)

    CAS  Article  Google Scholar 

  23. 23.

    J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, R.L. Penn, Science 289, 751 (2000)

    CAS  Article  Google Scholar 

  24. 24.

    D. Li, M.H. Nielsen, J.R.I. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, Science 336, 1014 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 41, 1188 (2002)

    CAS  Article  Google Scholar 

Download references


This work was financially supported by 111 project of China (No. B13035) and the Fundamental Research Funds for the Central Universities (WUT: 2016III020, 2019-zy-033).

Author information



Corresponding author

Correspondence to Dongyun Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yue, J., Huang, Z. et al. Efficient synthesis of dendritic PbTiO3 nanorods by hydrothermal method. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03781-1

Download citation