Influence of calcination atmosphere on the phase evolution mechanism of Bi-2223 high temperature superconductor


Precursor powders of Bi2Sr2Ca2Cu3O10+δ (Bi-2223) high temperature superconducting tapes were prepared with spray pyrolysis technique. By tuning the oxygen partial pressure in calcination atmosphere as 1.0%, 7.5%, and 10.0%, respectively, the influences of calcination atmosphere on the phase evolution dynamics during the precursor powders calcination process have been discussed. Then the optimal calcination temperatures have been obtained correspondingly. Moreover, Bi-2223 multi-filament tapes have been fabricated with the precursor powders calcinated under different atmosphere. The effects of precursor powder calcination parameters on the phase composition, microstructures as well as the current capacity of final tapes have been systematically studied. Due to the proper secondary phase content and enhanced Bi-2223 texture structures, the maximum critical current of 109 A at 77 K, self-field, corresponding to the critical current density of 23.3 kA cm−2 has been obtained with the oxygen partial pressure of 7.5% in calcination atmosphere and the calcination temperature of 790 °C.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau, Z. Phys. B 68, 421–423 (1987)

    CAS  Article  Google Scholar 

  2. 2.

    L. Masur, D. Parker, M. Tanner, E. Podtburg, D. Buczek, J. Scudiere, P. Caracino, S. Spreafico, P. Corsaro, M. Nassi, IEEE Trans. Appl. Supercond. 11(1), 3256–3260 (2001)

    Article  Google Scholar 

  3. 3.

    S. Yamade, N. Ayai, J. Fujikami, S. Kobayashi, E. Ueno, K. Yamazaki, M. Kikuchi, T. Kato, K. Hayashi, K. Sato, H. Kitaguchi, J. Shimoyama, Physica C 463–465, 821–824 (2007)

    Article  Google Scholar 

  4. 4.

    M. Hamabe, M. Sugino, H. Watanabe, T. Kwahara, S. Yamaguchi, Y. Ishiguro, K. Kawamura, IEEE Trans. Appl. Supercond. 21(3), 1038–1041 (2011)

    Article  Google Scholar 

  5. 5.

    L.Y. Xiao, S.T. Dai, L.Z. Lin, Y.P. Teng, H.E. Zhang, X.M. Liang, Z.Y. Gao, D. Zhang, N.H. Song, Z.Q. Zhu, F.Y. Zhang, Z.F. Zhang, X.C. Li, Z.C. Cao, X. Xu, W.W. Zhou, Y.B. Lin, IEEE Trans. Appl. Supercond. 22(3), 5800404 (2012)

    Article  Google Scholar 

  6. 6.

    A. Gonzalez-Parada, F.J. Espinosa-Loza, A. Castaneda-Miranda, R. Bosch-Tous, X. Granados-Garcia, IEEE Trans. Appl. Supercond. 22(3), 5201004 (2012)

    Article  Google Scholar 

  7. 7.

    B. Liu, R. Badcock, H. Shu, L. Tan, J. Fang, IEEE Trans. Appl. Supercond. 28(4), 5202405 (2018)

    Google Scholar 

  8. 8.

    T. Zhou, K. Lu, K. Ding, Y. Song, IEEE Trans. Appl. Supercond. 25(4), 4802906 (2015)

    Article  Google Scholar 

  9. 9.

    T. Tsurudome, J. Yoshida, H. Ookubo, Y. Mikami, H. Mitsubori, T. Kato, J. Sakuraba, K. Watazawa, IEEE Trans. Appl. Supercond. 23(3), 4802204 (2013)

    Article  Google Scholar 

  10. 10.

    S. Hanai, T. Tsuchihashi, S. Ioka, K. Watanabe, S. Awaji, H. Oguro, IEEE Trans. Appl. Supercond. 27(4), 4602406 (2017)

    Google Scholar 

  11. 11.

    W.S. Marshall, M.D. Bird, A. Godeke, D.C. Larbalestier, W.D. Markiewicz, J.M. White, IEEE Trans. Appl. Supercond. 27(4), 4300905 (2017)

    Article  Google Scholar 

  12. 12.

    M. Zouaoui, A. Ghattas, M. Annabi, F.B. Azzouz, M.B. Salem, Supercond. Sci. Technol. 21, 125005 (2008)

    Article  Google Scholar 

  13. 13.

    N. Darsono, A. Imaduddin, K. Raju, D.H. Yoon, J. Supercond. Nov. Magn. 28, 2259–2266 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    C.B. Mao, L. Zhou, X.Y. Sun, X.Z. Wu, Physica C 281, 35–44 (1997)

    CAS  Article  Google Scholar 

  15. 15.

    D.H. Chen, C.Y. Shei, S.R. Sheen, C.T. Chang, Jpn. J. Appl. Phys. 30(6), 1198–1203 (1991)

    CAS  Article  Google Scholar 

  16. 16.

    R. Bao, X.H. Song, S.S. Chen, H.B. Sun, K. Shi, K. Huang, Z.H. Han, IEEE Trans. Appl. Supercond. 23(3), 6400704 (2013)

    Article  Google Scholar 

  17. 17.

    X.D. Su, J.M. Yoo, J.W. Ko, H.D. Kim, H.S. Chung, Z.Q. Yang, G.W. Qiao, Physica C 331, 285–291 (2000)

    CAS  Article  Google Scholar 

  18. 18.

    B.A. Marinkovic, P.M. Jardim, F. Rizzo, L. Mancic, O. Milosevic, Mater. Chem. Phys. 94, 233–240 (2005)

    CAS  Article  Google Scholar 

  19. 19.

    J.-C. Grivel, X.P. Yang, A.B. Abrahamsen, Z. Han, N.H. Andersen, M.V. Zimmermann, J. Phys. Conf. Ser. 234, 022012 (2010)

    Article  Google Scholar 

  20. 20.

    C.H. Jiang, J. Yoo, J. Ko, G.W. Qiao, Physica C 406, 183–188 (2004)

    CAS  Article  Google Scholar 

  21. 21.

    C.H. Jiang, J.M. Yoo, J.W. Ko, H.S. Chung, G.W. Qiao, Supercond. Sci. Technol. 16, 85–89 (2003)

    CAS  Article  Google Scholar 

  22. 22.

    J. Jiang, J.S. Abell, Supercond. Sci. Technol. 10, A68–A92 (1997)

    Article  Google Scholar 

  23. 23.

    V. Garnier, I. Monot, G. Desgardin, Supercond. Sci. Technol. 13, 602–611 (2000)

    CAS  Article  Google Scholar 

  24. 24.

    B. Sailer, F. Schwaigerer, K. Gibson, H.J. Meyer, M. Lehmann, L. Woodall, M. Gerards, IEEE Trans. Appl. Supercond. 11(1), 2975–2978 (2001)

    Article  Google Scholar 

  25. 25.

    W.J. Kim, H.G. Lee, S.C. Kwon, K.B. Kim, H.J. Lee, G.W. Hong, IEEE Trans. Appl. Supercond. 9(2), 2754–2757 (1999)

    Article  Google Scholar 

  26. 26.

    V.G. Prabitha, R.P. Aloysius, P. Guruswamy, U. Syamaprasad, Mater. Lett. 59, 2638–2642 (2005)

    CAS  Article  Google Scholar 

  27. 27.

    M. Maneva, N. Petroff, J. Therm. Anal. 33, 447–454 (1988)

    Article  Google Scholar 

  28. 28.

    W. Brockner, C. Ehrhardt, M. Gjikaj, Thermochim. Acta 456, 64–68 (2007)

    CAS  Article  Google Scholar 

  29. 29.

    A. Bellosi, G. Celotti, E. Landi, A. Tampieri, J. Mater. Res. 11(7), 1627–1634 (1996)

    CAS  Article  Google Scholar 

  30. 30.

    D.P. Grindatto, J.-C. Grivel, G. Grasso, H.-U. Nissen, R. Flukiger, Physica C 298, 41–48 (1998)

    CAS  Article  Google Scholar 

  31. 31.

    J.-C. Grivel, R. Flukiger, J. Alloys Compd. 235, 53–58 (1996)

    CAS  Article  Google Scholar 

Download references


This study was financially supported by Light of West China under contract No. XAB2018AW15 and the International Cooperative Project in Shaanxi Province, No. 2018kw-055.

Author information



Corresponding author

Correspondence to Shengnan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Shao, B., Ma, X. et al. Influence of calcination atmosphere on the phase evolution mechanism of Bi-2223 high temperature superconductor. J Mater Sci: Mater Electron (2020).

Download citation