Skip to main content
Log in

Influence of calcination atmosphere on the phase evolution mechanism of Bi-2223 high temperature superconductor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Precursor powders of Bi2Sr2Ca2Cu3O10+δ (Bi-2223) high temperature superconducting tapes were prepared with spray pyrolysis technique. By tuning the oxygen partial pressure in calcination atmosphere as 1.0%, 7.5%, and 10.0%, respectively, the influences of calcination atmosphere on the phase evolution dynamics during the precursor powders calcination process have been discussed. Then the optimal calcination temperatures have been obtained correspondingly. Moreover, Bi-2223 multi-filament tapes have been fabricated with the precursor powders calcinated under different atmosphere. The effects of precursor powder calcination parameters on the phase composition, microstructures as well as the current capacity of final tapes have been systematically studied. Due to the proper secondary phase content and enhanced Bi-2223 texture structures, the maximum critical current of 109 A at 77 K, self-field, corresponding to the critical current density of 23.3 kA cm−2 has been obtained with the oxygen partial pressure of 7.5% in calcination atmosphere and the calcination temperature of 790 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau, Z. Phys. B 68, 421–423 (1987)

    Article  CAS  Google Scholar 

  2. L. Masur, D. Parker, M. Tanner, E. Podtburg, D. Buczek, J. Scudiere, P. Caracino, S. Spreafico, P. Corsaro, M. Nassi, IEEE Trans. Appl. Supercond. 11(1), 3256–3260 (2001)

    Article  Google Scholar 

  3. S. Yamade, N. Ayai, J. Fujikami, S. Kobayashi, E. Ueno, K. Yamazaki, M. Kikuchi, T. Kato, K. Hayashi, K. Sato, H. Kitaguchi, J. Shimoyama, Physica C 463–465, 821–824 (2007)

    Article  Google Scholar 

  4. M. Hamabe, M. Sugino, H. Watanabe, T. Kwahara, S. Yamaguchi, Y. Ishiguro, K. Kawamura, IEEE Trans. Appl. Supercond. 21(3), 1038–1041 (2011)

    Article  Google Scholar 

  5. L.Y. Xiao, S.T. Dai, L.Z. Lin, Y.P. Teng, H.E. Zhang, X.M. Liang, Z.Y. Gao, D. Zhang, N.H. Song, Z.Q. Zhu, F.Y. Zhang, Z.F. Zhang, X.C. Li, Z.C. Cao, X. Xu, W.W. Zhou, Y.B. Lin, IEEE Trans. Appl. Supercond. 22(3), 5800404 (2012)

    Article  Google Scholar 

  6. A. Gonzalez-Parada, F.J. Espinosa-Loza, A. Castaneda-Miranda, R. Bosch-Tous, X. Granados-Garcia, IEEE Trans. Appl. Supercond. 22(3), 5201004 (2012)

    Article  Google Scholar 

  7. B. Liu, R. Badcock, H. Shu, L. Tan, J. Fang, IEEE Trans. Appl. Supercond. 28(4), 5202405 (2018)

    Google Scholar 

  8. T. Zhou, K. Lu, K. Ding, Y. Song, IEEE Trans. Appl. Supercond. 25(4), 4802906 (2015)

    Article  Google Scholar 

  9. T. Tsurudome, J. Yoshida, H. Ookubo, Y. Mikami, H. Mitsubori, T. Kato, J. Sakuraba, K. Watazawa, IEEE Trans. Appl. Supercond. 23(3), 4802204 (2013)

    Article  Google Scholar 

  10. S. Hanai, T. Tsuchihashi, S. Ioka, K. Watanabe, S. Awaji, H. Oguro, IEEE Trans. Appl. Supercond. 27(4), 4602406 (2017)

    Google Scholar 

  11. W.S. Marshall, M.D. Bird, A. Godeke, D.C. Larbalestier, W.D. Markiewicz, J.M. White, IEEE Trans. Appl. Supercond. 27(4), 4300905 (2017)

    Article  Google Scholar 

  12. M. Zouaoui, A. Ghattas, M. Annabi, F.B. Azzouz, M.B. Salem, Supercond. Sci. Technol. 21, 125005 (2008)

    Article  Google Scholar 

  13. N. Darsono, A. Imaduddin, K. Raju, D.H. Yoon, J. Supercond. Nov. Magn. 28, 2259–2266 (2015)

    Article  CAS  Google Scholar 

  14. C.B. Mao, L. Zhou, X.Y. Sun, X.Z. Wu, Physica C 281, 35–44 (1997)

    Article  CAS  Google Scholar 

  15. D.H. Chen, C.Y. Shei, S.R. Sheen, C.T. Chang, Jpn. J. Appl. Phys. 30(6), 1198–1203 (1991)

    Article  CAS  Google Scholar 

  16. R. Bao, X.H. Song, S.S. Chen, H.B. Sun, K. Shi, K. Huang, Z.H. Han, IEEE Trans. Appl. Supercond. 23(3), 6400704 (2013)

    Article  Google Scholar 

  17. X.D. Su, J.M. Yoo, J.W. Ko, H.D. Kim, H.S. Chung, Z.Q. Yang, G.W. Qiao, Physica C 331, 285–291 (2000)

    Article  CAS  Google Scholar 

  18. B.A. Marinkovic, P.M. Jardim, F. Rizzo, L. Mancic, O. Milosevic, Mater. Chem. Phys. 94, 233–240 (2005)

    Article  CAS  Google Scholar 

  19. J.-C. Grivel, X.P. Yang, A.B. Abrahamsen, Z. Han, N.H. Andersen, M.V. Zimmermann, J. Phys. Conf. Ser. 234, 022012 (2010)

    Article  Google Scholar 

  20. C.H. Jiang, J. Yoo, J. Ko, G.W. Qiao, Physica C 406, 183–188 (2004)

    Article  CAS  Google Scholar 

  21. C.H. Jiang, J.M. Yoo, J.W. Ko, H.S. Chung, G.W. Qiao, Supercond. Sci. Technol. 16, 85–89 (2003)

    Article  CAS  Google Scholar 

  22. J. Jiang, J.S. Abell, Supercond. Sci. Technol. 10, A68–A92 (1997)

    Article  Google Scholar 

  23. V. Garnier, I. Monot, G. Desgardin, Supercond. Sci. Technol. 13, 602–611 (2000)

    Article  CAS  Google Scholar 

  24. B. Sailer, F. Schwaigerer, K. Gibson, H.J. Meyer, M. Lehmann, L. Woodall, M. Gerards, IEEE Trans. Appl. Supercond. 11(1), 2975–2978 (2001)

    Article  Google Scholar 

  25. W.J. Kim, H.G. Lee, S.C. Kwon, K.B. Kim, H.J. Lee, G.W. Hong, IEEE Trans. Appl. Supercond. 9(2), 2754–2757 (1999)

    Article  Google Scholar 

  26. V.G. Prabitha, R.P. Aloysius, P. Guruswamy, U. Syamaprasad, Mater. Lett. 59, 2638–2642 (2005)

    Article  CAS  Google Scholar 

  27. M. Maneva, N. Petroff, J. Therm. Anal. 33, 447–454 (1988)

    Article  Google Scholar 

  28. W. Brockner, C. Ehrhardt, M. Gjikaj, Thermochim. Acta 456, 64–68 (2007)

    Article  CAS  Google Scholar 

  29. A. Bellosi, G. Celotti, E. Landi, A. Tampieri, J. Mater. Res. 11(7), 1627–1634 (1996)

    Article  CAS  Google Scholar 

  30. D.P. Grindatto, J.-C. Grivel, G. Grasso, H.-U. Nissen, R. Flukiger, Physica C 298, 41–48 (1998)

    Article  CAS  Google Scholar 

  31. J.-C. Grivel, R. Flukiger, J. Alloys Compd. 235, 53–58 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Light of West China under contract No. XAB2018AW15 and the International Cooperative Project in Shaanxi Province, No. 2018kw-055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengnan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Shao, B., Ma, X. et al. Influence of calcination atmosphere on the phase evolution mechanism of Bi-2223 high temperature superconductor. J Mater Sci: Mater Electron 31, 12333–12344 (2020). https://doi.org/10.1007/s10854-020-03779-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03779-9

Navigation