Effects of Bi2O3–MnO2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics

Abstract

The development of miniaturized high frequency ferrite ceramics is attracting widely interest for next generation MLCI (multi-layer chip inductors). However, there exist short comings in the microstructure adversely affecting magnetic properties. In this study, 0.5 wt% MnO2-x wt% Bi2O3 (x = 0.1, 0.5, 1.0, 1.5, 2.0, and 3.0) were introduced into NiCuZn ferrites to adjust the microstructure at low temperatures. Also, the microstructure changes and high frequency magnetic properties of NiCuZn ferrites were investigated via controlling the addition of MnO2–Bi2O3 and sintering temperatures. SEM results indicated that quantitative MnO2 can suppress abnormal grain growth when optimized amount of Bi2O3 was added. In addition, various amounts of Bi2O3 were added to adjust the magnetic properties by controlling grain growth. Results revealed that 0.5 wt% MnO2-1.5 wt% Bi2O3 composite addition is a critical point to enhance the homogeneity of the samples. Also, interestingly, the dominant contribution to dynamic magnetization mechanism changes from spin rotation to domain wall motion when the content of Bi2O3 is greater than 1.0 wt%. Finally, fine microstructure of NiCuZn ferrites with high permeability (μ′ ≈ 291), high saturation magnetization (Ms ≈ 58.83 emu/g), high saturation flux density (Bs ≈ 290.04), high Q factor (~ 75) and enhanced cutoff frequency (~ 60 MHz) can be obtained sintered at 925 °C. Thus, this work may provide new guidance for developing RF frequency LTCC NiCuZn ferrite ceramics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Y. Yang, H. Zhang, J. Li, F. Xu, G. Gan, D. Wen, Effects of Bi2O3-Nb2O5 additives on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrite ceramics. Ceram. Int. 44, 10545–10550 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2016)

    Article  Google Scholar 

  3. 3.

    Y. Yang, H. Zhang, J. Li, G. Gan, G. Wang, D. Wen, Enhanced grain-boundary diffusion on power loss of low-temperature-fired NiCuZn ferrites for high-frequency power supplies. Appl. Phys. 124, 785 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    M.N. Akhtar, M.A. Khan, M.R. Raza, M. Ahmad, G. Murtaza, R. Raza, S.F. Shaukat, M.H. Asif, M. Saleem, M.S. Nazir, Structural, morphological, dielectric and magnetic characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) nanocomposites for multilayer chip inductor (MLCI) applications. Ceram. Int. 40, 15821–15829 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    Y.Z. Wang, H.Q. Zhou, H.Q. Qi, L.C. Ren, Z.M. Xu, Z.X. Yue, Sintering, microstructure and magnetic properties of low temperature co-fired NiCuZn ferrites with Nb2O5 and MoO3 additions. Ceram. Int. 41, 12253–12257 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    H. Zhu, Y. Jin, H. Zhu, W. Shen, Y. Xu, H. Zhou, Sintering, microstructures and magnetic properties of low temperature co-fired NiCuZn ferrites with B2O3 and WO3 additions. Mater. Res. Bull. 61, 32–35 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    T. Nakamura, Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites. J. Appl. Phys. 88, 348 (2000)

    CAS  Article  Google Scholar 

  8. 8.

    H. Zhu, Y. Jin, H. Zhou, W. Shen, Y. Xu, H. Zhou, Sintering, microstructure and magnetic properties of low temperature co-fired NiCuZn ferrites with B2O3 and WO3 additions. Mater. Res. Bull. 61, 32–35 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Jin, H. Zhu, Y. Xu, H. Zhu, Effects of Nb2O5-WO3 additive on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. J. Mater. Sci.: Mater. Electron. 26, 2397–2402 (2015)

    CAS  Google Scholar 

  10. 10.

    H. Zhu, W. Shen, H. Zhu, Y. Jin, H. Zhou, Influence of B2O3-MoO3 addition on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. Ceram. Int. 40, 10985–10989 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    X. Wu, S. Yan, W. Liu, Z. Feng, Y. Chen, V.G. Harris, Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications. J. Magn. Magn. Mater. 401, 1093–1096 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    E. Beyne, Multilayer thin-film technology enabling technology for solving high-density interconnect and assembly problems. Nuclear Inst. Methods Phys. Res. A 509, 191–199 (2003)

    CAS  Article  Google Scholar 

  13. 13.

    L. Guo, J. Li, Y. Yang, G. Wang, Y.H. Rao, G.W. Gan et al., Bi2O3-doping controlled magnetic and dielectric properties of low-temperature co-fired NiCuZn ferrite for high-frequency applications. J. Mater. Sci. Mater. Electron. 30, 15437–15443 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Yang, J. Li, J.X. Zhao, X. Chen, G.W. Gan, G. Wang et al., Synthesis of nickel zinc ferrite ceramics on enhancing gyromagnetic properties by a novel low-temperature sintering approach for LTCC applications. J. Alloy Compd. 778, 8–14 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    L. Jia, Y. Zhao, F. Xie, Q. Li, Y. Li, C. Liu et al., Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application. AIP Adv. 6, 056214 (2016)

    Article  Google Scholar 

  16. 16.

    Y. Yang, J. Li, H.W. Zhang, L.C. Jin, F. Xu, G.W. Gan et al., Enhanced gyromagnetic properties of NiCuZn ferrite ceramics for LTCC applications by adjusting MnO2-Bi2O3 substitution. Ceram. Int. 44, 19370–19376 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    F. Xu, D. Zhang, G. Wang, H. Zhang, Y. Yang, Y. Liao et al., Densification and magnetic properties of NiCuZn low-sintering temperature ferrites with Bi2O3-Nb2O5 composite additives. J. Alloy Compd. 776, 954–959 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009)

    CAS  Article  Google Scholar 

  19. 19.

    N. Jia, H. Zhang, V.G. Harris, Iron-depleted Bi-YIG having enhanced gyromagnetic properties suitable for LTCC processing. J. Am. Ceram. Soc. 102, 1180–1191 (2018)

    Article  Google Scholar 

  20. 20.

    H. Bahiraei, M.Z. Shoushtari, K. Gheisari, C.K. Ong, The effect of non-magnetic Al3+ ions on the structure and electromagnetic properties of MgCuZn ferrite. J. Magn. Magn. Mater. 371, 29–34 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    T. Zhou, D. Zhang, L. Jia, F. Bai, J. Ning, Effect of NiZn ferrite nanoparticles upon the structure, magnetic, and gyromagnetic properties of low-temperature processed LiZnTi ferrites. J. Phys. Chem. C 119, 13207–13214 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    F. Xu, Y. Liao, D. Zhang, T. Zhou, J. Li, G. Gan et al., Synthesis of highly uniform and compact lithium zinc ferrite ceramics via an efficient low temperature approach. Inorg. Chem. 56, 4513–4521 (2017)

    CAS  Google Scholar 

  23. 23.

    T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, K. Hatakeyama, Frequency dispersion and temperature variation of complex permeability of Ni-Zn ferrite composite materials. J. Appl. Phys. 78, 3983–3991 (1995)

    CAS  Article  Google Scholar 

  24. 24.

    J. Li, D. Wen, Q. Li, T. Qiu, G. Gan, H. Zhang, Equal permeability and permittivity in a low temperature co-fired In-doped Mg-Cd ferrite. Ceram. Int. 44, 678–682 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Z. Zheng, X. Wu, Q. Feng, V.G. Harris, Low loss and tailored high-frequency performances of BaO-doped NiZnCo magneto-dielectric ferrites. J. Am. Ceram. Soc. 103, 1248–1257 (2019)

    Article  Google Scholar 

  26. 26.

    P.J. van der Zaag, M. Kolenbrander, M.T. Rekveldt, The effect of intragranular domain walls in MgMnZn-ferrite. J. Appl. Phys. 83, 6870–6872 (1998)

    Article  Google Scholar 

  27. 27.

    T.Y. Byun, S.C. Byeon, K.S. Hong, K.K. Chang, Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites. IEEE Trans. Magn. 35, FE08 (1999)

    Google Scholar 

  28. 28.

    T.Y. Byun, S.C. Byeon, K.S. Hong, C.K. Kim, Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites. IEEE Trans. Magn. 35, 3445–3447 (1999)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Peng, X. Wu, Z. Chen, W. Liu, F. Wang, X. Wang et al., BiFeO3 tailored low loss M-type hexaferrite composites having equivalent permeability and permittivity for very high frequency applications. J. Alloys Compd. 630, 48–53 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    Y. Jin, H. Zhu, Y. Xu, H. Zhu, H. Zhou, Y. Jin, Effects of Nb2O5–WO3 additive on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. J. Mater. Sci. Mater. Electron. 26, 2397–2402 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    F. Xu, D. Zhang, Y. Liao, H. Zhang, Microstructure, magnetic-dielectric properties of flexible composite film for high frequency applications. Ceram. Int. 45, 6350–6355 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Scientific Instrument and Equipment Development Project No.51827802, and by the Sichuan Science and Technology Project No. 20MZGC0253, and by Major Science and Technology projects in Sichuan Province No. 2019ZDZX0026, and by the National Natural Science Foundation of China No. 51872041, and by Foundation for University Teacher of Education of China No. ZYGX2019J011.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yan Yang or Huaiwu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, J., Zhang, H. et al. Effects of Bi2O3–MnO2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics. J Mater Sci: Mater Electron (2020). https://doi.org/10.1007/s10854-020-03778-w

Download citation