Skip to main content

Advertisement

Log in

Structural, multiferroic, and magnetoelectric properties of (1 − x)Bi0.85La0.15FeO3xBaTiO3 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic magnetoelectric composites are beneficial in device fabrication because of their tunable ferroelectricity and magnetism. The partial substitution in bismuth ferrite (BiFeO3) is one of the best possible ways for synthesizing pure phase BiFeO3-based materials. A comprehensive study of (1 − x)Bi0.85La0.15FeO3xBaTiO3 (x = 0–0.3) was done by coalescing ferroelectric, dielectric, magnetic, and magnetoelectric properties with structural and microstructural characterizations to explore the effect of BaTiO3 (BT) into Bi0.85La0.15FeO3 (BLFO) and forming composite ceramics. The X-ray diffraction study reveals the phase purity in BLFO and a structural transformation from rhombohedral to cubic phase with increasing content of BT. The Raman spectroscopy and scanning electron micrographs confirm the co-existence of composite formation in BLFO–xBT. The Raman modes shift towards lower wavenumber with increasing BT concentration suggests lattice compression. The room temperature MH hysteresis curve shows the existence of weak ferromagnetism in BLFO–BT composites and superparamagnetism in BLFO–10BT ceramic. The curve fitting of MH curve for BLFO–10BT showed the existence of superparamagnetic particles. The ferroelectric hysteresis PE loop measurements produced unsaturated oval-shaped loops with high leakage and displayed a lossy dielectric nature. The effect of magnetic field on polarization versus electric field curve reveals the interfacial interaction due to the origin of magnetoelectric interaction in BLFO–BT composite ceramics. All the samples display peak broadening in temperature–permittivity plot and confirm relaxor behavior. The superparamagnetic behavior and magnetic field-dependent energy storage capacity of BLFO–10BT composite ceramic make this material a potential candidate for magnetoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Yang, L. Jin, R. Wei, X. Tang, L. Hu, P. Tong, J. Yang, W. Song, J. Dai, X. Zhu, Y. Sun, S. Zhang, X. Wang, Z. Cheng, Small 3, 1903663 (2019)

    Google Scholar 

  2. M.S. Bernardo, T. Jardiel, M. Peiteado, A.C. Caballero, M. Villegas, J. Eur. Ceram. Soc. 31, 3047 (2011)

    CAS  Google Scholar 

  3. N. Kumar, B. Narayan, S. Kumar, K.C. Verma, R. Ranjan, J. Shah, R.K. Kotnala, Mater. Res. Express 4, 095701 (2017)

    Google Scholar 

  4. H. Wang, S. Nie, H. Li, R. Alias, J. Fu, H. Xiong, J. Li, Z. Wu, W.M. Lau, N. Mahmood, R. Jia, Y. Liu, X. Jian, ACS Sens. 4, 2343 (2019)

    CAS  Google Scholar 

  5. Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin, J. Xie, N. Mahmood, S. Dou, R. Che, L. Deng, Chem. Eng. J. 384, 123371 (2020)

    Google Scholar 

  6. X. Jian, W. Tian, J. Li, L. Deng, Z. Zhou, L. Zhang, H. Lu, L. Yin, N. Mahmood, ACS Appl. Mater. Interfaces 11, 15869 (2019)

    CAS  Google Scholar 

  7. K.L. Yadav, R.K. Kotnala, J. Adv. Ceram. 8, 333 (2019)

    Google Scholar 

  8. Y. Cheng, B. Peng, Z. Hu, Z. Zhou, M. Liu, Phys. Lett. A 382, 3018 (2018)

    CAS  Google Scholar 

  9. A.B. Swain, S. Dinesh Kumar, V. Subramanian, P. Murugavel, Phys. Rev. Appl. 13, 1 (2020)

    Google Scholar 

  10. N.A. Spaldin, MRS Bull. 42, 385 (2017)

    Google Scholar 

  11. N.A. Spaldin, Proc. R. Soc. A (2020). https://doi.org/10.1098/rspa.2019.0542

    Article  Google Scholar 

  12. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)

    CAS  Google Scholar 

  13. J. Zhang, C. Fang, G.J. Weng, Proc. R. Soc. A 475, 0002 (2019)

    Google Scholar 

  14. P. Zhou, A.V. Singh, Z. Li, M.A. Popov, Y. Liu, D.A. Filippov, T. Zhang, W. Zhang, P.J. Shah, B.M. Howe, M.E. Mcconney, G. Srinivasan, M.R. Page, A. Gupta, Phys. Rev. Appl. 054045, 1 (2019)

    Google Scholar 

  15. Y. Li, S.D. Zhou, H. Wu, Y.G. Wang, F.G. Chen, J. Alloys Compd. 809, 151799 (2019)

    CAS  Google Scholar 

  16. D. Pang, C. He, X. Long, J. Alloys Compd. 709, 16 (2017)

    CAS  Google Scholar 

  17. S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, S.K. Deshpande, M.V. Murugendrappa, B. Angadi, J. Alloys Compd. 724, 787 (2017)

    CAS  Google Scholar 

  18. C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 25, 2086 (2014)

    CAS  Google Scholar 

  19. R. Pandey, L.K. Pradhan, S. Kumar, S. Supriya, R.K. Singh, M. Kar, J. Appl. Phys. 125, 244105 (2019)

    Google Scholar 

  20. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, W. Cai, Composites B 166, 204 (2019)

    CAS  Google Scholar 

  21. K. Osińska, J. Dzik, H. Bernard, B. Wodecka-Duś, A. Lisińska-Czekaj, D. Czekaj, Ferroelectrics 418, 60 (2011)

    Google Scholar 

  22. H.L. Mo, D.M. Jiang, C.M. Wang, W.G. Zhang, J. Sen Jiang, J. Alloys Compd. 579, 187 (2013)

    CAS  Google Scholar 

  23. M. Lorenz, V. Lazenka, P. Schwinkendorf, F. Bern, M. Ziese, H. Modarresi, A. Volodin, M.J. Van Bael, K. Temst, A. Vantomme, M. Grundmann, J. Phys. D 47, 135303 (2014)

    Google Scholar 

  24. S. Hohenberger, V. Lazenka, S. Selle, C. Patzig, K. Temst, M. Lorenz, Phys. Status Solidi Basic Res. 20, 1900613 (2020)

    Google Scholar 

  25. T.E. Quickel, L.T. Schelhas, R.A. Farrell, N. Petkov, V.H. Le, S.H. Tolbert, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  26. N. Adhlakha, K.L. Yadav, R. Singh, Smart Mater. Struct. 23, 105024 (2014)

    Google Scholar 

  27. R. Shuai Han, L. Qian Qi, X. Hou, L. Hu Liu, H. Yuan Liu, X.N. Xian, G.X. Guo, H. Yuan Sun, J. Magn. Magn. Mater. 420, 117 (2016)

    Google Scholar 

  28. S. Ojha, W.C. Nunes, N.M. Aimon, C.A. Ross, ACS Nano 10, 7657 (2016)

    CAS  Google Scholar 

  29. M. Kumar, S. Shankar, G.D. Dwivedi, A. Anshul, O.P. Thakur, A.K. Ghosh, Appl. Phys. Lett. 106, 072903 (2015)

    Google Scholar 

  30. S. Shankar, M. Kumar, A.K. Ghosh, O.P. Thakur, J. Mater. Sci. Mater. Electron. 25, 4896 (2014)

    CAS  Google Scholar 

  31. S. Shankar, M. Kumar, S. Kumar, O.P. Thakur, A.K. Ghosh, J. Alloys Compd. 694, 715 (2017)

    CAS  Google Scholar 

  32. A. Sathiya Priya, I.B. Shameem Banu, S. Anwar, Mater. Lett. 142, 42 (2015)

    CAS  Google Scholar 

  33. A. Prasatkhetragarn, P. Muangkonkad, P. Aommongkol, P. Jantaratana, N. Vittayakorn, R. Yimnirun, Ceram. Int. 39, 249 (2013)

    Google Scholar 

  34. D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, J. Eur. Ceram. Soc. 37, 1857 (2017)

    CAS  Google Scholar 

  35. N. Sharma, S. Kumar, A.K. Mall, R. Gupta, A. Garg, Mater. Res. Express 4, 015702 (2017)

    Google Scholar 

  36. K. Sen, K. Singh, A. Gautam, M. Singh, Ceram. Int. 38, 243 (2012)

    CAS  Google Scholar 

  37. A. Perejón, P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda, J.M. Criado, J. Romero De Paz, R. Sáez-Puche, N. Masó, A.R. West, J. Mater. Chem. C 2, 8398 (2014)

    Google Scholar 

  38. I. Calisir, A.A. Amirov, A.K. Kleppe, D.A. Hall, J. Mater. Chem. A 6, 5378 (2018)

    CAS  Google Scholar 

  39. Q. Pan, B. Chu, J. Appl. Phys. 125, 1 (2019)

    CAS  Google Scholar 

  40. S.V. Baryshnikov, E.V. Charnaya, A.Y. Milinskii, A.A. Antonov, A.S. Bugaev, Composites B 80, 15 (2015)

    CAS  Google Scholar 

  41. X. Wu, M. Tian, Y. Guo, Q. Zheng, L. Luo, D. Lin, J. Mater. Sci. Mater. Electron. 26, 978 (2014)

    Google Scholar 

  42. L.F. Zhu, B.P. Zhang, S. Li, L. Zhao, N. Wang, X.C. Shi, J. Alloys Compd. 664, 602 (2016)

    CAS  Google Scholar 

  43. G. Schileo, L. Luisman, A. Feteira, M. Deluca, K. Reichmann, J. Eur. Ceram. Soc. 33, 1457 (2013)

    CAS  Google Scholar 

  44. B.W. Xun, N. Wang, B.P. Zhang, X.Y. Chen, Y.Q. Zheng, W.S. Jin, R. Mao, K. Liang, Ceram. Int. 45, 24382 (2019)

    CAS  Google Scholar 

  45. K. Tong, C. Zhou, Q. Li, J. Wang, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, J. Eur. Ceram. Soc. 38, 1356 (2018)

    CAS  Google Scholar 

  46. N. Zhao, H. Fan, X. Ren, J. Ma, J. Bao, Y. Guo, Y. Zhou, Ceram. Int. 44, 18821 (2018)

    CAS  Google Scholar 

  47. Q. Li, J. Wei, J. Cheng, J. Chen, J. Mater. Sci. 52, 229 (2017)

    CAS  Google Scholar 

  48. A.S. Priya, I.B.S. Banu, D. Geetha, S. Sankar, Mater. Res. Express 6, 106116 (2019)

    CAS  Google Scholar 

  49. M.H. Lee, D.J. Kim, H.I. Choi, M.-H. Kim, T.K. Song, W.-J. Kim, D. Do, ACS Appl. Electron. Mater. 1, 1772 (2019)

    CAS  Google Scholar 

  50. L.F. Zhu, X.W. Lei, L. Zhao, M.I. Hussain, G.Z. Zhao, B.P. Zhang, Ceram. Int. 45, 20266 (2019)

    CAS  Google Scholar 

  51. G. Wang, Z. Fan, S. Murakami, Z. Lu, D.A. Hall, D.C. Sinclair, A. Feteira, X. Tan, J.L. Jones, A.K. Kleppe, D. Wang, I.M. Reaney, J. Mater. Chem. A 7, 21254 (2019)

    CAS  Google Scholar 

  52. R. Pandey, L. Kumar Pradhan, S. Kumari, M. Kumar Manglam, S. Kumar, M. Kar, J. Magn. Magn. Mater. 508, 166862 (2020)

    CAS  Google Scholar 

  53. R. Pandey, L.K. Pradhan, M. Kar, J. Phys. Chem. Solids 115, 42 (2018)

    CAS  Google Scholar 

  54. S. Shankar, M. Kumar, V. Tuli, O.P. Thakur, M. Jayasimhadri, J. Mater. Sci. Mater. Electron. 29, 18352 (2018)

    CAS  Google Scholar 

  55. P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, J. Appl. Phys. 117, 194103 (2015)

    Google Scholar 

  56. S.V.V. Khikhlovskyi, G. Blake, The Renaissance of Multiferroics: Bismuth Ferrite (BiFeO3)—A Candidate Multiferroic Material in Nanoscience. PhD Thesis, 2010

  57. M.R. Islam, M.S. Islam, M.A. Zubair, H.M. Usama, M.S. Azam, A. Sharif, J. Alloys Compd. 735, 2584 (2018)

    CAS  Google Scholar 

  58. O.D. Jayakumar, S.N. Achary, K.G. Girija, A.K. Tyagi, C. Sudakar, G. Lawes, R. Naik, J. Nisar, X. Peng, R. Ahuja, Appl. Phys. Lett. 96, 2 (2010)

    Google Scholar 

  59. A. Mukherjee, S. Basu, P.K. Manna, S.M. Yusuf, M. Pal, J. Mater. Chem. C 2, 5885 (2014)

    CAS  Google Scholar 

  60. S. Thakur, O.P. Pandey, K. Singh, Phase Transit. 87, 527 (2014)

    CAS  Google Scholar 

  61. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1993)

    Google Scholar 

  62. K.W. Wagner, Ann. Phys. (N.Y). 40, 817 (1973)

    Google Scholar 

  63. D. Dhayanithi, M. Muneeswaran, N.V. Giridharan, Ferroelectrics 518, 103 (2017)

    CAS  Google Scholar 

  64. T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan, Y. Lin, J. Appl. Phys. 121, 084103 (2017)

    Google Scholar 

  65. F. Yang, G. Le Dong, Y.L. Sui, S.Y. Ye, P. Li, C.G. Chen, X.X. Gao, Z.M. Guo, Rare Met. 38, 770 (2019)

    CAS  Google Scholar 

  66. A. Peláiz-Barranco, J.D.S. Guerra, O. García-Zaldívar, F. Calderón-Piñar, M.E. Mendoza, D.A. Hall, E.B. Araújo, Solid State Commun. 149, 1308 (2009)

    Google Scholar 

  67. V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, J. Alloys Compd. 584, 369 (2014)

    CAS  Google Scholar 

  68. M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by Research Scheme No. 03(1427)/18/EMR-II, CSIR, New Delhi and supported by USIC, University of Delhi, New Delhi, India for characterization facilities. The authors are also thankful to Netaji Subhas University of Technology (NSUT), New Delhi, India for P–E Characterization Facility and University Science Instrumentation Centre (USIC), University of Delhi, Delhi, India for XRD and Magnetic Characterization Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jayasimhadri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, S., Thakur, O.P. & Jayasimhadri, M. Structural, multiferroic, and magnetoelectric properties of (1 − x)Bi0.85La0.15FeO3xBaTiO3 composite ceramics. J Mater Sci: Mater Electron 31, 12226–12237 (2020). https://doi.org/10.1007/s10854-020-03768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03768-y

Navigation