Strategies and insights towards the high performance visible light photocatalytic activity of MnO2/PPy hybrid catalysts: challenges and perspectives

Abstract

In this work, α‐MnO2 on polypyrrole nanosheets (α‐MnO2/PPy) were constructed via a facile hydrothermal method. The composition of MnO2 with PPy is varied from 1, 1.5 and 2 mmol %. Tetragonal α‐MnO2 phase with spherical particles are uniformly wrapped on the PPy nanosheets, which is determined by XRD, Raman, SEM and TEM analysis. Due to high surface area (104.52 m2/g) and porous nature (14.2 nm) of the α‐MnO2/PPy adsorption edges were further extended with in the visible light region and simultaneous reduction of band gap energy (3.48–2.58 eV) could be observed by UV–Vis spectra. Rapid recombination process of electron–hole process was further diminished the intensity, which is analyzed through PL spectroscopy. The photocatalytic activity of the obtained catalyst was monitored using Reactive Black 31 (RB31) and 4-chlorophenol (2-CP) dyes under visible light. The outstanding degradation efficiency of 96%, high apparent constant (0.8712 min−1) and desirable long term stability was observed in MnO2/PPy composite catalyst towards RB31 dye. The improved photocatalytic mechanism has also been proposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J. Porras, C. Bedoya, J. Silva-Agredo, A. Santamaría, J.J. Fernández, R.A. Torres-Palma, Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Res. 94, 1–9 (2016)

    CAS  Google Scholar 

  2. 2.

    L. Qin, H.-Z. Chen, J. Lei, Y.-Q. Wang, T.-Q. Ye, H.-G. Zheng, Photodegradation of some organic dyes over two metal–organic frameworks with especially high efficiency for safranine T. Cryst. Growth Des. 17(3), 1293–1298 (2017)

    CAS  Google Scholar 

  3. 3.

    S. Kumar, V. Sharma, K. Bhattacharyya, V. Krishnan, Synergetic effect of MoS2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New J. Chem. 40(6), 5185–5197 (2016)

    CAS  Google Scholar 

  4. 4.

    S. Kumar, A. Kumar, A. Kumar, R. Balaji, V. Krishnan, Highly efficient visible light active 2D–2D nanocomposites of N-ZnO-g-C3N4 for photocatalytic degradation of diverse industrial pollutants. Chem. Sel. 3(6), 1919–1932 (2018)

    CAS  Google Scholar 

  5. 5.

    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen- doped titanium oxides. Science 293, 269–271 (2001)

    CAS  Google Scholar 

  6. 6.

    X.B. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    CAS  Google Scholar 

  7. 7.

    Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001)

    CAS  Google Scholar 

  8. 8.

    Q. Liu, Y. Zhou, J.H. Kou, X.Y. Chen, Z.P. Tian, J. Gao, S.C. Yan, Z.G. Zou, Zn2GeO4 crystal splitting toward sheaf-like, hyperbranched nanostructures and photocatalytic reduction of CO2 into CH4 under visible light after nitridation. J. Mater. Chem. 22, 2033–2038 (2012)

    CAS  Google Scholar 

  9. 9.

    M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis. Chem. Rev. 93, 341–357 (1993)

    CAS  Google Scholar 

  10. 10.

    D.A. Kitchaev, S.T. Dacek, W. Sun, G. Ceder, Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration. J. Am. Chem. Soc. 139, 2672–2681 (2017)

    CAS  Google Scholar 

  11. 11.

    A. Kumar, V. Sharma, S. Kumar, A. Kumar, V. Krishnan, Towards utilization of full solar light spectrum using green plasmonic Au–TiOx photocatalyst at ambient conditions. Surf. Interfaces 11, 98–106 (2018)

    Google Scholar 

  12. 12.

    S.L. Suib, Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc. Chem. Res. 41, 479–487 (2008)

    CAS  Google Scholar 

  13. 13.

    W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    CAS  Google Scholar 

  14. 14.

    E. Hayashi, T. Komanoya, K. Kamata, M. Hara, Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with MnO2. Chem. Sus. Chem. 10, 654–658 (2017)

    CAS  Google Scholar 

  15. 15.

    J. Liu, X. Ge, X. Ye, G. Wang, H. Zhang, H. Zhou, Y. Zhang, H. Zhao, 3D graphene/δ- MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J. Mater. Chem. A 4, 1970–1979 (2016)

    CAS  Google Scholar 

  16. 16.

    M. Ou, J. Huang, X. Yang, K. Quan, Y. Yang, N. Xie, K. Wang, MnO2 nanosheet mediated “DD–A” FRET binary probes for sensitive detection of intracellular mRNA. Chem. Sci. 8, 668–673 (2017)

    CAS  Google Scholar 

  17. 17.

    X. Zhang, S.K. Manohar, Bulk synthesis of polypyrrole nanofibers by a seeding approach. J. Am. Chem. Soc. 126, 12714–12715 (2004)

    CAS  Google Scholar 

  18. 18.

    S. Barman, F. Deng, R.L. McCreery, Conducting polymer memory devices based on dynamic doping. J. Am. Chem. Soc. 130, 11073–11081 (2008)

    CAS  Google Scholar 

  19. 19.

    L.L. Norman, A. Badia, Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: an investigation of the origin of the micromechanical motion and surface stress. J. Am. Chem. Soc. 131, 2328–2337 (2009)

    CAS  Google Scholar 

  20. 20.

    H.Y. Qin, Z.X. Liu, W.X. Yin, J.K. Zhu, Z.P. Li, A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell. J. Power Sources 185, 909–912 (2008)

    CAS  Google Scholar 

  21. 21.

    Z. Wang, H. Jai, T. Zheng, Y. Dai, C. Zhang, X. Guo, T. Wang, L. Zhu, Promoted catalytic transformation of polycyclic aromatic hydrocarbons by MnO2 polymorphs: Synergistic effects of Mn3+ and oxygen vacancies. Appl. Catal. B 272, 119030 (2020)

    CAS  Google Scholar 

  22. 22.

    P. Zeng, N. Wang, M. Yao, H. Ren, W. Hu, Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chem. Eng. J. 380, 122488 (2020)

    Google Scholar 

  23. 23.

    C. Guo, S. Tian, B. Chen, H. Liu, J.F. Li, Constructing α-MnO2@PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. Mater. Lett. 262, 127180 (2020)

    CAS  Google Scholar 

  24. 24.

    M. Sumathi, A. Prakasam, P.M. Anbarasan, High capable visible light driven photocatalytic activity of WO3/g-C3N4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route. J. Mater. Sci. Mater. Electron. 30, 3294–3304 (2019)

    CAS  Google Scholar 

  25. 25.

    S. Li, Y. Chang, G. Han, H. Song, Y. Chang, Y. Xiao, Asymmetric supercapacitor based on reduced graphene oxide/MnO and polypyrrole deposited on carbon foam derived from melamine sponge. J. Phys. Chem. Solids 130, 100–110 (2019)

    CAS  Google Scholar 

  26. 26.

    T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, M. Aghazadeh, Facile synthesis of α- MnO2 one-dimensional (1D) nanostructure and energy storage ability studies. J. Solid State. Chem. 190, 202–207 (2012)

    CAS  Google Scholar 

  27. 27.

    Y. Wei, F.K. Hsueh, G.W. Jang, A Study of leucoemeraldine and effect of redox reactions on molecular weight of chemically prepared polyaniline. Macromolecules 27, 518–525 (1994)

    CAS  Google Scholar 

  28. 28.

    M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method. J. Iran. Chem. Soc. 15, 2789–2801 (2018)

    CAS  Google Scholar 

  29. 29.

    M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. 15, 1419–1430 (2018)

    CAS  Google Scholar 

  30. 30.

    R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. Eur. Phys. Lett. 83, 37002–37018 (2008)

    Google Scholar 

  31. 31.

    M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. Boopathi Raja, Microwave assisted synthesis of pure and Ag doped SnO2 quantum dots as novel platform for high photocatalytic activity performance. J. Clust. Sci. 30, 351–363 (2019)

    CAS  Google Scholar 

  32. 32.

    R. Boopathi Raja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    CAS  Google Scholar 

  33. 33.

    M. Sumathi, A. Prakasam, P.M. Anbarasan, High capable visible light driven photocatalytic activity of WO3/g-C3N4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route. J. Mater. Sci. 30, 3294–3304 (2019)

    CAS  Google Scholar 

  34. 34.

    L. Zang, C.Y. Liu, X.M. Ren, Photochemistry of semiconductor particles. Part 4. Effects of surface condition on the photodegradation of 2,4-dichlorophenol catalysed by TiO2 suspensions. J. Chem. Soc. Faraday Trans. 91, 917–923 (1995)

    CAS  Google Scholar 

  35. 35.

    N. Mittal, A. Shah, P.B. Punjabi, V.K. Sharma, Photodegradation of rose Bengal using MnO2 (Manganese oxide). Rasayan J. Chem. 2, 516–520 (2009)

    CAS  Google Scholar 

  36. 36.

    A. Kumar, G. Pandey, Preparation and photocatalytic activity of TiO2 /PPy/GO for the degradation of Rose Bengal and Victoria Blue dye in visible light in aqueous solution. Desalin. Water Treat. 114, 265–284 (2018)

    CAS  Google Scholar 

  37. 37.

    A. Kumar, G. Pandey, Comparative photocatalytic degradation of rose Bengal dye under visible light by TiO2, TiO2/PAni and TiO2/PAni/GO nanocomposites. Int. J. Res. Appl. Sci. Eng. Technol. 6, 339–344 (2018)

    CAS  Google Scholar 

  38. 38.

    M.J. Chatterjee, A. Ghosh, A. Monda, D. Banerjee, Polyaniline-single walled carbon nanotube composite—a photocatalyst to degrade rose bengal and methyl orange dyes under visible-light illumination. RSC Adv. 7, 36403–36415 (2017)

    CAS  Google Scholar 

  39. 39.

    J. Kaur, S. Singha, Heterogeneous photocatalytic degradation of rose bengal: effect of operational parameters. Phys. B 450, 49–53 (2014)

    CAS  Google Scholar 

  40. 40.

    Y. Yucheng, W. Junwei, W. Jianhong, R. Xiong, J. Shi, P. Chun-Xu, Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible light illumination. ACS Appl. Mater. Interfaces 5, 6201–6207 (2013)

    Google Scholar 

  41. 41.

    L. Zhang, P. Liu, Z. Su, Preparation of PANI/TiO2 nanocomposites and their solid phase photocatalytic degradation. Polym. Degrad. Stab. 91, 2213–2219 (2016)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Surumbarkuzhali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parveen, A., Surumbarkuzhali, N. Strategies and insights towards the high performance visible light photocatalytic activity of MnO2/PPy hybrid catalysts: challenges and perspectives. J Mater Sci: Mater Electron 31, 11955–11966 (2020). https://doi.org/10.1007/s10854-020-03750-8

Download citation