Skip to main content

Crystallization, microstructure and energy storage behavior of borate glass–ceramics


The borate glass–ceramics with a great energy storage density were fabricated using the melt-quenching method and then heat-treated technology. The microstructure, dielectric properties, energy storage properties and charge–discharge behavior were discussed. The dielectric constant increases monotonically with the increase of crystallization temperature, but the breakdown strength and energy storage density show a trend of increasing first and then decreasing, which is opposite to the activation energy reflecting the interfacial polarization. When the crystallization temperature is 750 °C, the activation energy reaches the lowest value. The glass–ceramics heated at 750 °C have the high breakdown strength of 1487 kV/cm, the maximum energy density of 9.61 J/cm3 and high energy efficiency of 89%, while the actual discharge density reaches the maximum value of 0.4811 J/cm3 under a voltage applied of 500 kV/cm, which makes the materials suitable for applications in energy storage, especially in high power and pulsed power systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D Appl. Phys. 29, 253–258 (1996)

    CAS  Article  Google Scholar 

  2. 2.

    G.R. Love, Energy storage in ceramic dielectrics. J. Am. Ceram. Soc. 73, 323–328 (1990)

    CAS  Article  Google Scholar 

  3. 3.

    F. Li, J.W. Zhai, B. Shen, X. Liu, H.R. Zeng, Simultaneously high energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2)TiO3 ergodic relaxor ceramics. Mater. Res. Lett. 6, 345–352 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jsap. Int. 42, 1–15 (2003)

    CAS  Google Scholar 

  5. 5.

    Q.M. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J. Am. Ceram. Soc. 92, 1871–1873 (2009)

    CAS  Article  Google Scholar 

  6. 6.

    Y.F. Wang, J. Cui, Q.B. Yuan, Y.J. Niu, H. Wang, Nanocomposites: significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    A. Niyompan, K. Srisurat, R. Tipakontitikul, Crystallization behavior and dielectric properties of ferroelectric glass-ceramics containing BNN and NN crystals. Ferroelectrics 459, 172–187 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    Y. Yang, J. Song, G.H. Chen, C.L. Yuan, X.Q. Li, C.R. Zhou, Effect of crystallization temperature on the dielectric property and energy density of SrO-BaO-Nb2O6-B2O3 glass-ceramics. J. Non-Cryst. Solods 410, 96–99 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, S.M. Xiu, S. Xiao, Z.B. Pan, Enhanced energy storage density and discharge efficiency in the strontium sodium niobate-based glass-ceramics. J. Alloys Compd. 687, 280–285 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    G.H. Chen, W.J. Zhang, T.Y. Liu, C.R. Zhou, Preparation and properties of strontium barium niobate based glass-ceramics for energy storage capacitors. J. Electroceram. 27, 78–82 (2011)

    Article  Google Scholar 

  11. 11.

    H.T. Wang, J.H. Liu, J.W. Zhai, B. Shen, Z.B. Pan, K.L. Yang, Effect of K2O content on breakdown strength and energy-storage density in K2O-BaO-Nb2O5-SiO2 glass-ceramics. Ceram. Int. 43, 4183–4187 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    B. Li, D.Z. Wang, G.H. Chen, X. Liu, C.L. Yuan, Effect of K:Ba ratio on energy storage properties of strontium barium potassium niobate-glass ceramics. J. Mater. Sci. Mater. Electron. 30, 19262–19269 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    G.H. Chen, J. Zheng, C.L. Yuan, C.R. Zhou, X.L. Kang, J.W. Xu, Y. Yang, Enhanced energy storage properties of P2O5 modified niobate-based B2O3 system glass ceramic composites. Mater. Lett. 176, 46–48 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    D.H. Jiang, J.J. Chen, B.B. Lu, J. Xi, F. Shang, J.W. Xu, G.H. Chen, Preparation, crystallization kinetics and microwave dielectric properties of CaO-ZnO-B2O3-P2O5-TiO2 glass-ceramics. Ceram. Int. 45, 8233–8237 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    H.T. Wang, J.H. Liu, J.W. Zhai, Z.B. Pan, B. Shen, Effects of Sr substitution for Ba on dielectric and energy-storage properties of SrO-BaO-K2O-Nb2O5-SiO2 glass-ceramics. J. Eur. Ceram. Soc. 37, 3917–3925 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    M.I. Mendelson, Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52, 443–446 (1969)

    CAS  Article  Google Scholar 

  17. 17.

    Y. Zhou, Y. Qiao, Y.M. Tian, K.Y. Wang, G.M. Li, Y.S. Chai, Improvement in structural, dielectric and energy-storage properties of lead-free niobate glass-ceramic with Sm2O3. J. Eur. Ceram. Soc. 37, 995–999 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    J.R. Liu, K. Yang, J.W. Zhai, B. Shen, Effects of crystallization temperature on phase evolution and energy storage properties of BaO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics. J. Eur. Ceram. Soc. 38, 2312–2317 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    Y. Zhang, J.J. Huang, T. Ma, X.R. Wang, C.S. Deng, X.M. Dai, Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass-ceramics. J. Am. Ceram. Soc. 94, 1805–1810 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    H.Y. Lee, K.H. Cho, H. Nam, Grain size and temperature dependence of electrical breakdown in BaTiO3 ceramic. Ferroelectrics 334, 165–169 (2006)

    CAS  Article  Google Scholar 

  21. 21.

    A. Kishimoto, K. Koumoto, H. Yanagida, Mechanical and dielectric failure of BaTiO3 ceramics. J. Mater. Sci. 24, 698–702 (1989)

    CAS  Article  Google Scholar 

  22. 22.

    W. Chen, W.G. Zhu, O.K. Tan, S.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 108, 034101 (2010)

    Article  Google Scholar 

  23. 23.

    A. Prasad, A. Basu, Dielectric and impedance properties of sintered magnesium aluminum silicate glass-ceramic. J. Adv. Ceram. 1, 71–78 (2013)

    Article  Google Scholar 

  24. 24.

    S.X. Xue, S.H. Liu, W.Q. Zhang, B. Shen, J.W. Zhai, Correlation of energy conversion efficiency and interface polarization in niobate glass-ceramic for energy-storage applications. Appl. Phys. Lett. 106, 162903 (2015)

    Article  Google Scholar 

  25. 25.

    L.J. Liu, Y.M. Huang, C.X. Su, L. Fang, M.X. Wu, C.Z. Hu, H.Q. Fan, Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A 104, 1047–1051 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    S.X. Xue, J.W. Wang, S.H. Liu, W.Q. Zhang, L.J. Tang, B. Shen, J.W. Zhai, Effect of the Ba/Na ratio on the microstructure and dielectric properties of (BaO, Na2O)-Nb2O5-SiO2 glass-ceramics. Ceram. Int. 5, 7495–7499 (2014)

    Article  Google Scholar 

  27. 27.

    S. Xiao, S.M. Xiu, B. Shen, J.W. Zhai, Microstructure evolution and energy storage properties of potassium strontium niobate boroaluminosilicate glass-ceramics by microwave crystallization. J. Eur. Ceram. Soc. 36, 4071–4076 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    J.W. Wang, L.J. Tang, B. Shen, J.W. Zhai, Property optimization of BST-based composite glass ceramics for energy-storage applications. Ceram. Int. 40, 2261–2266 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    J.H. Liu, H.T. Wang, B. Shen, J.W. Zhai, P. Li, Z.B. Pan, Significantly enhanced energy-storage density in the strontium barium niobate-based/titanate-based glass-ceramics. J. Am. Ceram. Soc. 100, 506–510 (2017)

    CAS  Article  Google Scholar 

Download references


Financial supported by Innovation Project of Guangxi Graduate Education (YCSW2019150), GUET Excellent Graduate Thesis Program (18YJPYSS32) and Guangxi Key Laboratory of Information Materials (Grants No. 171002-Z) are gratefully acknowledged by the authors.

Author information



Corresponding authors

Correspondence to Fei Shang or Guohua Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Zhong, Y., Shang, F. et al. Crystallization, microstructure and energy storage behavior of borate glass–ceramics. J Mater Sci: Mater Electron 31, 12074–12082 (2020).

Download citation