Semiconductor heterostructure composite materials of Fe2O3 and CeO2 for low-temperature solid oxide fuel cells

Abstract

There is a rapid growing interest in low-temperature operation of solid oxide fuel cells (LTSOFCs). Recent advances in composited or doped CeO2 have resulted in high ion conductivity at low temperature below 600 °C. However, doped CeO2 faced reduced electronic conduction by fuel cell operation. In this study, we report a semiconductor heterostructure of CeO2–Fe2O3 for the electrolyte applications. We successfully developed high ionic conduction up to 0.18 S cm−1 while suppressing its electronic conduction following a good fuel cell demonstration of 403 mW cm−2 at 530 °C. The mechanism of ionic conduction and enhanced conductivity as well as suppression of electronic conductivity has been further investigated. Our findings demonstrate that the composite of the semiconductor heterostructure materials is a highly promising electrolyte for LTSOFCs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Y. Huang, A. Hussaina, E. Wachsman, Nanoscale cathode modification for high performance and stable lowtemperature solid oxide fuel cells (SOFCs). Nano Energy 49, 186–192 (2018)

    CAS  Google Scholar 

  2. 2.

    M. Abdalla, H. Shahzad, T. Atia, I. Mohammad, B. Feroza, G. Sten, K. Abul, Nanomaterials for solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 82, 353–368 (2018)

    CAS  Google Scholar 

  3. 3.

    Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv. Mater. 29(1700132), 1–33 (2017)

    Google Scholar 

  4. 4.

    S. Hossain, A.M. Abdalla, S.N. Binti Jamain, J.J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 79, 750–764 (2017)

    CAS  Google Scholar 

  5. 5.

    B. Steele, M. Hori, S. Uchino, Kinetic parameters influencing the performance of IT-SOFC composite electrodes. Solid State Ionics 135, 445 (2000)

    CAS  Google Scholar 

  6. 6.

    T.L. Gilbile, R.S. Pawar, V.N. Kapatkar, R.C. Kamble, S.S. Pawar, Synthesis and performance tuning of Sm0.2Ce0.8O2-δ electrolyte for low temperature solid oxide fuel cell application. J. Electron. Mater. 48, 4117–4122 (2019)

    CAS  Google Scholar 

  7. 7.

    W. Zajac, L. Suescun, K. Swierczek, M. Janina, Structural and electrical properties of grain boundaries in Ce0.85Gd0.15O1.925 solid electrolyte modified by addition of transition metal ions. J. Power Sources 194, 2–9 (2009)

    CAS  Google Scholar 

  8. 8.

    K. Shao, F. Li, G. Zhang, Q. Zhang, K. Maliutina, L. Fan, Approaching durable single-layer fuel cells: promotion of electroactivity and charge separation via nanoalloy redox exsolution. ACS Appl. Mater. Interfaces 11(31), 27924–27933 (2019)

    CAS  Google Scholar 

  9. 9.

    L.D. Fan, B. Zhu, P.C. Su, C.X. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148–176 (2018)

    CAS  Google Scholar 

  10. 10.

    A. Corma, P. Atienzar, H. Garcia, J.Y. Chane-ching, Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3, 394–397 (2004)

    CAS  Google Scholar 

  11. 11.

    M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341, 771–773 (2013)

    CAS  Google Scholar 

  12. 12.

    T. Hu, S.Q. Xiao, H.J. Yang, L. Chen, Y.W. Chen, Cerium oxide as an efficient electron extraction layer for p–i–n structured perovskite solar cells. Chem. Commun. 54, 471–474 (2018)

    CAS  Google Scholar 

  13. 13.

    X. Lu, D. Zheng, P. Zhang, C. Liang, P. Liu, Y. Tong, Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications. Chem. Commun. 46, 7721–7723 (2016)

    Google Scholar 

  14. 14.

    G. Wang, J. Bai, Y. Wang, Z. Ren, J.B. Bai, Prepartion and electrochemical performance of cerium oxide-graphene nanocomposite as anode material for lithium ion battery. Scripta Mater. 65, 339–342 (2011)

    CAS  Google Scholar 

  15. 15.

    S.D. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)

    CAS  Google Scholar 

  16. 16.

    L.Y. Li, B. Zhu, J. Zhang, C. Yan, Y. Wu, Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. Int. J. Hydrogen Energy 43, 12909–12916 (2018)

    CAS  Google Scholar 

  17. 17.

    M. Melchionna, P. Fornasiero, The role of ceria-based nanostructured materials in energy applications. Mater. Today. 17, 349–357 (2014)

    CAS  Google Scholar 

  18. 18.

    C.W. Sun, H. Li, L.Q. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 25, 8475–8505 (2012)

    Google Scholar 

  19. 19.

    B. Zhu, R. Raza, G. Abbas, M. Singh, An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 21, 2465 (2011)

    CAS  Google Scholar 

  20. 20.

    B. Zhu, R. Raza, H. Qin, Q. Liu, L. Fan, Fuel cells based on electrolyte and non-electrolyte separators. Energy Environ. Sci. 4, 2986 (2011)

    CAS  Google Scholar 

  21. 21.

    C. Xia, Y.Q. Mi, B.Y. Wang, B. Lin, G. Chen, B. Zhu, Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 10, 1707 (2019)

    Google Scholar 

  22. 22.

    B. Zhu, C. Xia, X. Luo, G. Niklasson, Transparent two-phase composite oxide thin films with high conductivity. Thin Solid Films 385(1–2), 209–214 (2001)

    CAS  Google Scholar 

  23. 23.

    X. Luo, B. Zhu, C. Xia, G.A. Niklasson, C.G. Granqvist, Transparent ion-conducting ceria-zirconia films made by sol–gel technology. Solar Energy Mater. Solar Cells 53(3–4), 341–347 (1998)

    CAS  Google Scholar 

  24. 24.

    B. Zhu, Using a fuel cell to study fluoride-based electrolytes. Electrochem. Commun. 1(6), 242–246 (1999)

    CAS  Google Scholar 

  25. 25.

    L. Fan, C. Wang, O. Osamudiamen, R. Raza, M. Singh, B. Zhu, Mixed ion and electron conductive composites for single component fuel cells: I. Effects of composition and pellet thickness. J. Power Sources 217, 164–169 (2012)

    CAS  Google Scholar 

  26. 26.

    L. Fan, C. Wang, B. Zhu, Low temperature ceramic fuel cells using all nano composite materials. Nano Energy 1(4), 631–639 (2012)

    CAS  Google Scholar 

  27. 27.

    B. Zhu, X. Liu, P. Zhou, Z. Zhu, W. Zhu, S. Zhou, Cost-effective yttrium doped ceria-based composite ceramic materials for intermediate temperature solid oxide fuel cell applications. J. Mater. Sci. Lett. 20(7), 591–594 (2011)

    Google Scholar 

  28. 28.

    B. Zhu, P. Lund, R. Raza, J. Patakangas, Q.A. Huang, L.D. Fan, M. Singh, A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2, 1179–1185 (2013)

    CAS  Google Scholar 

  29. 29.

    B. Zhu, P. Lund, R. Raza, Y. Ma, L.D. Fan, M. Afzal et al., Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv. Energy Mater. 5, 1401895 (2015)

    Google Scholar 

  30. 30.

    B. Zhu, Y.Z. Huang, L.D. Fan, Y. Ma, B.Y. Wang et al., Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19, 156 (2016)

    CAS  Google Scholar 

  31. 31.

    J. Cheng, C. Tian, J. Yang, Effects of Fe2O3 addition on the electrical properties of SDC solid electrolyte ceramics. J. Mater. Sci. 30, 16613–16620 (2019)

    CAS  Google Scholar 

  32. 32.

    H. Yahiro, Y. Eguchi, H. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samadum oxide system with fluorite structure. J. Appl. Electrochem. 18, 527–553 (1998)

    Google Scholar 

  33. 33.

    C.H.S. Brian, H. Angelika, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

    Google Scholar 

  34. 34.

    Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi, S. Yun et al., Proton shuttles in CeO2/CeO2- core-shell structure. ASC Energy Lett. 11, 2601–2607 (2019)

    Google Scholar 

  35. 35.

    P.C.J. Graat, M.A.J. Somers, Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra. Appl. Surf. Sci. 100, 36 (1996)

    Google Scholar 

  36. 36.

    P. Mills, J.L. Sullivan, A study of the core level electrons in iron and its 3 oxides by means of X-ray photoelectron-spectroscopy. J. Phys. D 16, 723 (1983)

    CAS  Google Scholar 

  37. 37.

    D.D. Hawn, B.M. Dekoven, Deconvolution as a correction for photoelectron inelastic energy-losses in the core level xps spectra of iron-oxides. Surf. Interface Anal. 10, 63 (1987)

    CAS  Google Scholar 

  38. 38.

    M. Muhler, R. Schlogl, G. Ertl, The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. Catalyst 138, 413 (1992)

    CAS  Google Scholar 

  39. 39.

    C.D. Wagner, L.H. Gale, R.H. Raymond, 2-dimensional chemical-state plots—standardized data set for use in identifying chemical-states by X-ray photoelectron-spectroscopy. Anal. Chem. 51, 466 (1979)

    CAS  Google Scholar 

  40. 40.

    W. Zhang, Y. Cai, B. Wang, H. Deng, C. Feng, W. Dong et al., The fuel cells studies from ionic electrolyte Ce0.8Sm0.05Ca0.15O2−δ to the mixture layers with semiconductor Ni0.8Co0.15Al0.05LiO2−δ. Int. J. Hydrogen Energy 41, 18761–18768 (2016)

    CAS  Google Scholar 

  41. 41.

    G.H. Zhang, W.J. Li, W. Huang, Z.Q. Cao, K. Shao, F.J. Li, C.Y. Tang, C.H. Li, C.X. He, Q.L. Zhang, L.D. Fan, Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: one-step synthesis and super interfacial proton conduction. J. Power Sources 386, 56–65 (2018)

    CAS  Google Scholar 

  42. 42.

    M. Afzal, M. Saleemi, B.Y. Wang, C. Xia, W. Zhang, Y.J. He, J. Jayasuriy, B. Zhu, Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3−δ- Sm0.2Ce0.8O1.9) and Schottky barrier. J. Power Sources 328, 136–142 (2016)

    CAS  Google Scholar 

  43. 43.

    Z. Qiao, C. Xia, Y. Cai, M. Afzal, H. Wang, J. Qiao et al., Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power Sources 392, 33–40 (2018)

    CAS  Google Scholar 

  44. 44.

    S.L. Shen, Y.P. Yang, L.J. Guo, H.T. Liu, A polarization model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. J. Power Sources 256, 43–51 (2014)

    CAS  Google Scholar 

  45. 45.

    Y. Wu, C. Xia, W. Zhang, X. Yang, Z.Y. Bao, J.J. Li, B. Zhu, Natural hematite for next-generation solid oxide fuel cells. Adv. Funct. Mater. 26, 938–942 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 19KJB480010; 18KJD480004), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190137).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuzheng Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lu, Y., Li, D. et al. Semiconductor heterostructure composite materials of Fe2O3 and CeO2 for low-temperature solid oxide fuel cells. J Mater Sci: Mater Electron 31, 11825–11832 (2020). https://doi.org/10.1007/s10854-020-03736-6

Download citation