Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La0.67Ba0.25Ca0.08MnO3 manganite

Abstract

The conduction mechanism and electric properties of La0.67Ba0.25Ca0.08MnO3 (LBCM) were analyzed depending on temperature and frequency. The frequency dependence of electrical conduction plot was explained by the jump relaxation model. The electrical conduction process was based on both theoretical conduction models assigned to the Correlated Barrier Hopping and Non-overlapping Small Polaron Tunneling mechanism. The impedance plot studies reveal that the relaxation is a non-Debye poly-dispersive pattern in the LBCM. This compound has excellent dielectric properties such as the dielectric permittivity exceeding 105 at room temperature, i.e., colossal permittivity, and is one of the highest values recorded for ceramic capacitors. Thus, evolution of dielectric permittivity, described in terms of spatial charge polarization based on Koop's phenomenological theory and Maxwell–Wagner's (M– W) model and high dielectric response, has been driven by barrier layers into the grain boundaries and blended structures of Mn3+/Mn4+. The relaxation processes were examined with modulus, impedance formalism, and electrical conductivity. In the thermal analysis, the relaxations mechanism are related oxygen vacancies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    T. Xu, L. Chen, Z. Guo, T. Ma, Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys. Chem. Chem. Phys. 18, 27026–27050 (2016). https://doi.org/10.1039/C6CP04553G

    CAS  Article  Google Scholar 

  2. 2.

    M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, A family of oxide ion conductors based on the ferroelectric perovskite Na1/2Bi1/2TiO3. Nat. Mater. 13, 31–35 (2014). https://doi.org/10.1038/nmat3782

    CAS  Article  Google Scholar 

  3. 3.

    Y. Kim, K.H. Kim, D.Y. Son, D.N. Jeong, J.Y. Seo, Y.S. Choi, I.T. Han, S.Y. Lee, N.G. Park, Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–89 (2017). https://doi.org/10.1038/nature24032

    CAS  Article  Google Scholar 

  4. 4.

    J. Mira, J. Rivas, F. Rivadulla, C. VaHzquez-vaHzquez, M.A.L. Hpez-Quintela, Change from first-to second-order magnetic phase transition in La2/3(C a, Sr)1/3MnO3 perovskites. Phys. Rev. B. 60, 2929 (1999). https://doi.org/10.1103/PhysRevB.60.2998

    Article  Google Scholar 

  5. 5.

    B. Padmanabhan, S. Elizabeth, H.L. Bhat, S. Robler, K. Dorr, K.H. Muller, J. Magn. Magn. Mater. 307, 288–294 (2006). https://doi.org/10.1016/j.jmmm.2006.04.018

    CAS  Article  Google Scholar 

  6. 6.

    R. Mnassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, Effect of barium-deficiency on the structural, magnetic, and magnetocaloric properties of La0. 6Sr0.2Ba0. 2–x xMnO3 (0≤ x≤ 0.15). J. Appl. Phys. 113, 073905 (2013). https://doi.org/10.1063/1.4792730

    CAS  Article  Google Scholar 

  7. 7.

    A. Dhahri, F.I.H. Rhouma, J. Dhahri, E. Dhahri, M.A. Valente, Structural and electrical characteristics of rare earth simple perovskite oxide La0.57Nd0.1Pb0.33Mn0.8Ti0.2O3. Solid State Commun. 151, 738–742 (2011). https://doi.org/10.1016/j.ssc.2011.01.015

    CAS  Article  Google Scholar 

  8. 8.

    V.A. Isupov, Some problems of diffuse ferroelectric phase transitions. Ferroelectrics 90, 113 (1989). https://doi.org/10.1080/00150198908211278

    Article  Google Scholar 

  9. 9.

    H. Wang, X. Xiong, J. Xu, L. Wang, L. Bian, W. Ren, A. Chang, Complex impedance analysis on orientation effect of LaMn0.6Al0.4O3 thin films. J. Matter. Sci. 26, 369–376 (2015). https://doi.org/10.1007/s10854-014-2409-x

    CAS  Article  Google Scholar 

  10. 10.

    C. Caranoni, N. Menguy, B. Hilezer, M. Glinchuk, V. Stephanovich, The nature of different behaviour of PSN and PST relaxors. Ferroelectrics 240, 241–248 (2000). https://doi.org/10.1080/00150190008227976

    Article  Google Scholar 

  11. 11.

    C. Fang, L.Y. Chen, D.X. Zhou, Influence of domain on grain size effects of the dielectric properties of BaTiO3 nanoceramics and nanoparticles. Phys. B 409, 83–86 (2013). https://doi.org/10.1016/j.physb.2012.10.016

    CAS  Article  Google Scholar 

  12. 12.

    F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, Dielectric, modulus and impedance analysis of lead-free ceramics Ba 0.8La 0.133Ti1-xSnxO3 (x= 0.15 and 0.2). Appl. Phys. A 108, 593–600 (2012). https://doi.org/10.1007/s00339-012-6935-1

    CAS  Article  Google Scholar 

  13. 13.

    F.B. Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, I. Bsoul, M. Awawdeh, Critical behavior and change in universality of La0.67Ba0.22Sr0.11Mn1- xCoxO3 manganites. Solid State Sci. 37, 121–130 (2014). https://doi.org/10.1007/s10854-015-3085-1

    CAS  Article  Google Scholar 

  14. 14.

    I. Betancourt, L.L. Maldonado, J.T.E. Galindo, Magnetic properties and magnetocaloric response of mixed valence La2/3Ba1/3Mn1− xFexO3 manganites. J. Magn. Magn. Mater. 401, 812–815 (2016). https://doi.org/10.1016/j.jmmm.2015.10.137

    CAS  Article  Google Scholar 

  15. 15.

    K. Cherif, A. Belkahla, J. Dhahri, Impedance studies of La0.6Gd0.1Sr0.3Mn0.9In0.1O3 manganite prepared by the sol-gel method. J. Alloys Compd. 777, 358–363 (2019). https://doi.org/10.1016/j.jallcom.2018.11.032

    CAS  Article  Google Scholar 

  16. 16.

    M. Bourguiba, M.A. Gdaiem, M. Chafra, E.K. Hlil, H. Belmabrouk, A. Bajahzar, Effect of titanium substitution on the structural, magnetic and magnetocaloric properties of La0.67 Ba0.25Ca0.08MnO3 perovskite manganites. J. Appl. Phys. A 125, 375 (2019). https://doi.org/10.1007/s00339-019-2665-y

    CAS  Article  Google Scholar 

  17. 17.

    S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, Structural and impedance spectroscopy properties of Pr0.6Sr0.4Mn1-xTixO3±δ perovskites. J. Alloys Compd. 574, 290–298 (2013). https://doi.org/10.1016/j.jallcom.2013.05.144

    CAS  Article  Google Scholar 

  18. 18.

    K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993). https://doi.org/10.1016/0079-6786(93)90002-9

    CAS  Article  Google Scholar 

  19. 19.

    A.P. Barranco, M.P. Gutiérrez-Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73, 2039–2041 (1998). https://doi.org/10.1063/1.122360

    Article  Google Scholar 

  20. 20.

    Y.B. Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537–1543 (2015). https://doi.org/10.1007/s00339-015-9353-3

    CAS  Article  Google Scholar 

  21. 21.

    A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982). https://doi.org/10.1080/00018738200101418

    CAS  Article  Google Scholar 

  22. 22.

    J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Microwave sintered Bi0.90La0. 10Fe0.95Mn0.05O3 nanocrystalline ceramics: Impedance and modulus spectroscopy. Ceram. Int 42, 12914–12921 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    S.E.L. Kossi, C. Rayssi, A.H. Dhahri, J. Dhahri, K. Khirouni, High dielectric constant and relaxor behavior in La0.7Sr0.25Na0.05Mn0.8Ti0.2O3 manganite. J. Alloys Compd. 767, 456–463 (2018). https://doi.org/10.1016/j.jallcom.2018.07.056

    CAS  Article  Google Scholar 

  24. 24.

    C. Rayssi, S.E.L. Kossi, J. Dhahri, K. Khirouni, Colossal dielectric constant and non-debye type relaxor in Ca0.85Er0.1Ti1-x Co4x/3O3 (x=0.15 and 0.2) ceramic. J. Alloys Compd. 759, 93–99 (2018). https://doi.org/10.1016/j.jallcom.2018.05.155

    CAS  Article  Google Scholar 

  25. 25.

    F. Gaâbel, M. Khlifi, N. Hamdaoui, L. Beji, K. Taibi, J. Dhahri, Microstructural, structural and dielectric analysis of Ni-doped CaCu3Ti4O12 ceramic with low dielectric loss. J. Mater. Sci. 30, 14823–14833 (2019). https://doi.org/10.1007/s10854-019-01886-w

    CAS  Article  Google Scholar 

  26. 26.

    S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, Variable-range-hopping conduction and dielectric relaxation in Pr0. 6Sr0. 4Mn0. 6Ti0. 4O3±δ perovskite. J. Magn. Magn. Mater 371, 69–76 (2014). https://doi.org/10.1016/j.jmmm.2014.07.044

    CAS  Article  Google Scholar 

  27. 27.

    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)

    Google Scholar 

  28. 28.

    H. Rahmouni, B. Cherif, K. Khirouni, M. Baazaoui, S. Zemni, Influence of polarization and iron content on the transport properties of praseodymium–barium manganite. J. Phys. Chem. Solids 88, 35–40 (2016). https://doi.org/10.1016/j.jpcs.2015.09.011

    CAS  Article  Google Scholar 

  29. 29.

    S. Das, A.J. Bhattacharyya, Time–temperature scaling of conductivity spectra of organic plastic crystalline conductors. J. Phys. Chem. Lett. 3, 3550–3554 (2012). https://doi.org/10.1021/jz301742z

    CAS  Article  Google Scholar 

  30. 30.

    S.N. Tripathy, Z. Wojnarowska, J. Knapik, H. Shirota, R. Biswas, M. Paluch, Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: the case of (acetamide+ lithium nitrate/sodium thiocyanate) melts. J. Chem. Phys. 142, 184504 (2015). https://doi.org/10.1063/1.4919946

    CAS  Article  Google Scholar 

  31. 31.

    M. Atif, M. Nadeem, W. Khalid, Z. Ali, Structural, magnetic and impedance spectroscopy analysis of (0.7) CoFe2O4+ (0.3) BaTiO3 magnetoelectric composite. Mater. Res. Bull. 107, 171–179 (2018). https://doi.org/10.1021/jp1060864

    CAS  Article  Google Scholar 

  32. 32.

    L. Singh, I.W. Kim, B.C. Sin, A. Ullah, S.K. Woo, Y. Lee, Study of dielectric, ACimpedance, modulus properties of 0.5 Bi0.5Na0.5TiO3- 0.5CaCu3Ti4O12 nano-composite synthesized by a modified solid state method. J. Mater. Sci. Semicond. Process. 31, 386–396 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    I.W. Kim, C.W. Ahn, J.S. Kim, J.S. Bae, B.C. Choi, J.H. Jheong, J.S. Lee, Lowfrequency dielectric relaxation and ac conduction of SrBi2Ta2O9 thin film grown by pulsed laser deposition. Appl. Phys. Lett. 80, 4006 (2002). https://doi.org/10.1063/1.1482138

    CAS  Article  Google Scholar 

  34. 34.

    A. Bettaibi, R. Jemai, K. Khirouni, M.A. Wederni, R. Mnassri, M. Barbouche, Effect of erbium concentration on the structural, optical and electrical properties of a Bi4Ti3O12 system. RSC Adv. 7, 22578 (2017). https://doi.org/10.1039/C6RA27906F

    CAS  Article  Google Scholar 

  35. 35.

    L. Singh, I.W. Kim, B.C. Sin, K.D. Mandal, U.S. Rai, A. Ullah, H. Chung, Y. Lee, Dielectric studies of a nano-crystalline CaCu2.90Zn0.10Ti4O12 electro ceramic by one pot glycine assisted synthesis from inexpensive TiO2 for energy storage capacitors. RSC Adv. 4, 52770–52784 (2014). https://doi.org/10.1039/C4RA08915D

    CAS  Article  Google Scholar 

  36. 36.

    Z. Sun, L. Li, S. Yu, X. Kang, S. Chen, Energy storage properties and relaxor behavior of lead-free Ba 1–x Sm 2x/3 Zr 0.15 Ti 0.85 O 3 ceramics. Dalton Trans. 46, 14341–14347 (2017). https://doi.org/10.1039/C7DT03140H

    CAS  Article  Google Scholar 

  37. 37.

    L. Badr, Low temperature conductivity and ion dynamics in silver iodide-silver metaphosphate glasses. Phys. Chem. Chem. Phys. 19, 21527–21531 (2017). https://doi.org/10.1039/C7CP03695G

    CAS  Article  Google Scholar 

  38. 38.

    R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, Impedance and electric modulus analysis of Sm-modified Pb (Zr0.55Ti0.45)1–x/4O3 ceramics. J. Alloys Compd. 509, 6388–6394 (2011). https://doi.org/10.1016/j.jallcom.2011.03.003

    CAS  Article  Google Scholar 

  39. 39.

    S.E.L. Kossi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, Structural and electric properties of La0.7Sr0.25Na0.05Mn0.9Ti0.1O3 ceramics. Phys. B 440, 118–123 (2014). https://doi.org/10.1016/j.physb.2014.01.016

    CAS  Article  Google Scholar 

  40. 40.

    M. Mączka, N.L. Costa, A. Gągor, W. Paraguassu, A. Sieradzki, J. Hanuza, Structural, thermal, dielectric and phonon properties of perovskite-like imidazolium magnesium formate. Phys. Chem. Chem. Phys 18, 13993 (2016). https://doi.org/10.1039/C6CP01353H

    CAS  Article  Google Scholar 

  41. 41.

    Z. Raddaoui, R. Lahouli, S.E.L. Kossi, J. Dhahri, K. Khirouni, K. Taibi, Effect of oxygen vacancies on dielectric properties of Ba (1–x) Nd (2x/3) TiO3 compounds. J. Alloys Compd. 771, 67–78 (2019). https://doi.org/10.1016/j.jallcom.2018.08.242

    CAS  Article  Google Scholar 

  42. 42.

    J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2∕ 3Cu3Ti4O12. Phys. Rev. B 70, 144106–144112 (2004). https://doi.org/10.1103/PhysRevB.70.144106

    CAS  Article  Google Scholar 

  43. 43.

    P. Kumari, R. Rai, A.L. Kholkin, Influence of BiFeTaO3 addition on the electrical properties of Na0. 4725K0. 4725Li0. 055NbO3 ceramics system using impedance spectroscopy. J. Alloys Compd. 637, 203–212 (4725Li). https://doi.org/10.1016/j.jallcom.2015.02.149

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jemai Dhahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bourguiba, M., Raddaoui, Z., Dhahri, A. et al. Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La0.67Ba0.25Ca0.08MnO3 manganite. J Mater Sci: Mater Electron 31, 11810–11818 (2020). https://doi.org/10.1007/s10854-020-03733-9

Download citation