Aging characteristic of Cu-doped nickel manganite NTC ceramics


The drift in electrical properties (e. g., the resistivity and B-value) is vital to the practical application for negative temperature coefficient (NTC) ceramics. In this work, Cu-doped nickel manganite ceramics were prepared by solid-state method, to investigate the degradation mechanism of both the resistivity and B-value. Results showed that the as-prepared ceramics exhibited typical NTC characteristics with cubic spinel phase, and that Cu doping greatly reduced the resistivity and B-value. However, the increase of Cu content in system aggravated the drift in the resistivity and B-value after the samples were aged at 300 °C for 30 h. XPS was carried out to further clarify the change in electrical properties. It was found that the decline of properties was due to the decrease of Mn4+ content in system after aging, which derived from the increase of chemical valence of Cu.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    J.A. Becker, C.B. Green, G.L. Pearson, Properties and uses of thermistors-thermally sensitive resistors. Electr. Eng. 65, 711–725 (1946)

    Article  Google Scholar 

  2. 2.

    F. Guan, X. Lin, H. Dai, J. Wang, X. Cheng, S. Huang, LaMn(1–x)TixO(3)-NiMn2O4(0≤x≤0.7): a composite NTC ceramic with controllable electrical property and high stability. J. Eur. Ceram. Soc. 39, 2692–2696 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    K. Park, I.H. Han, Effect of partial substitution of Mg for Co in Mn1.4Ni1.2Co0.4O4 NTC thermistors on electrical stability. J. Electroceram. 17, 1079–1082 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    P. Li, H. Zhang, C. Gao, G. Jiang, Z. Li, Electrical property of Al/La/Cu modified ZnO-based negative temperature coefficient (NTC) ceramics with high ageing stability. J. Mater. Sci. Mater. Electron. 30, 19598–19608 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    A. Petar, M. Pedja, Temperature compensation of NTC thermistors based anemometer. Sens. Actuators, A 285, 210–215 (2019)

    Article  Google Scholar 

  6. 6.

    S. Liang, X. Zhang, Y. Bai, Z. Han, J. Yang, Study on the preparation and electrical properties of NTC thick film thermistor deposited by supersonic atmospheric plasma spraying. Appl. Surf. Sci. 257, 9825–9829 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    C. Ma, Y. Liu, Y. Lu, H. Gao, H. Qian, J. Ding, Effect of Zn substitution on the phase, microstructure and electrical properties of Ni0.6Cu0.5ZnxMn1.9xO4(0 ≤ x ≤ 1) NTC ceramics. Mater. Sci. Eng. B 188, 66–71 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    L. Chen, J. Wang, C. Huang, Q. Zhang, S. Chang, A. Chang, J. Yao, High performance of Ni0.9Mn1.8Mg0.3O4 spinel nanoceramic microbeads via inkjet printing and two step sintering. RSC Adv. 6, 35118–35123 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    K. Park, I.H. Han, Effect of Cr2O3 addition on the microstructure and electrical properties of Mn-Ni-Co oxides NTC thermistors. J. Electroceram. 17, 1069–1073 (2006)

    CAS  Article  Google Scholar 

  10. 10.

    H. Gao, C. Ma, B. Sun, Preparation and characterization of NiMn2O4 negative temperature coefficient ceramics by solid-state coordination reaction. J. Mater. Sci. Mater. Electron. 25, 3990–3995 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    R.N. Jadhav, V. Puri, Influence of copper substitution on structural, electrical and dielectric properties of Ni(1–x)CuxMn2O4 (0≤x≤1) ceramics. J. Alloy. Compd. 507, 151–156 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    C. Ma, Y. Liu, Y. Lu, Preparation routes and electrical properties for Ni0.6Mn2.4O4 NTC ceramics. J. Mater. Sci. Mater. Electron. 26, 7238–7243 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    M. Ji, W. Ren, L. Li, Y. Wang, X. Zhang, Q. Zhou, J. Hu, C. Jiang, Formation of highly textured Zn0.2Ni0.8Mn2O4 thin films by RF magnetron sputtering. ECS J. Solid State Sci. Technol. 7, 114–116 (2018)

    Article  Google Scholar 

  14. 14.

    K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, The effect of Zn on the microstructure and electrical properties of Mn1.17xNi0.93Co0.9ZnxO4 (0≤x≤0.075) NTC thermistors. J. Alloys Compd. 467, 310–316 (2009)

    CAS  Article  Google Scholar 

  15. 15.

    C. Zhao, Y. Zhao, The investigation of Zn content on the structure and electrical properties of ZnxCu0.2Ni0.66Mn2.14-xO4 negative temperature coefficient ceramics. J. Mater. Sci. Mater. Electron. 23, 1788–1792 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    A. NgueteuKamlo, J. Bernard, C. Lelievre, D. Houive, Synthesis and NTC properties of YCr1−xMnxO3 ceramics sintered under nitrogen atmosphere. J. Eur. Ceram. Soc. 31, 1457–1463 (2011)

    Article  Google Scholar 

  17. 17.

    S. Liang, X. Zhang, H.B. Li, M. Luo, J. Li, L.J. He, J.F. Yang, Fabrication and characterization of Ni-Mn-Si-Al-O NTC thermistor and its application as temperature wire sensor. Funct. Mater. Lett. 6, 1350039 (2013)

    Article  Google Scholar 

  18. 18.

    X. Sun, S. Leng, H. Zhang, Z. He, Z. Li, Electrical properties and temperature sensitivity of Li/Mg modified Ni0.7Zn0.3O based ceramics. J. Alloys Compd. 763, 975–982 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    C. Ma, Y. Liu, Y. Lu, H. Qian, Preparation and electrical properties of Ni0.6Mn2.4-xTixO4 NTC ceramics. J. Alloys Compd. 650, 931–935 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38, 5181–5188 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    M.A. Rafiq, M.T. Khan, Q.K. Muhammad, M. Waqar, F. Ahmed, Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.5-xCu0.05O4 NTC thermistors. Appl. Phys. A-Mater. Sci. Process. 123, 589 (2017)

    Article  Google Scholar 

  22. 22.

    P.B. Yuksel, H. Gokhan, Preparation and characterization of Ni-Co-Zn-Mn-O negative temperature coefficient thermistors with B2O3 addition. J. Mater. Sci.: Mater. Electron. 30, 17432–17439 (2019)

    Google Scholar 

  23. 23.

    J. Chen, J. Wang, J. Yao, A. Chang, B. Wang, Pd/Ag thin film deposited on negative temperature coefficient (NTC) ceramics by direct current magnetron sputtering. Vacuum 167, 227–233 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    T. Liu, H. Zhang, P. Ma, A. Chang, H. Jiang, Core-shell NTC materials with low thermal constant and high resistivity for wide-temperature thermistor ceramics. J. Am. Ceram. Soc. 102, 4393–4398 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    R. Metz, Electrical properties of N.T.C. thermistors made of manganite ceramics of general spinel structure: Mn3-x-xMxNxO4 (0<x+x′<1; M and N being Ni, Co or Cu). Aging phenomenon study. J. Mater. Sci. 35, 4705–4711 (2000)

    CAS  Article  Google Scholar 

  26. 26.

    S. Michaela, M. Christian, S. Sophie, P. Veronique, K. Jaroslaw, M. Ralf, Characterization of nickel manganite NTC thermistor films prepared by aerosol deposition at room temperature. J. Eur. Ceram. Soc. 38, 613–619 (2018)

    Article  Google Scholar 

  27. 27.

    S. Michaela, M. Christian, S. Sophie, P. Veronique, K. Jaroslaw, M. Ralf, Novel method for NTC thermistor production by aerosol co-deposition and combined sintering. Sensors 19, 1632 (2019)

    Article  Google Scholar 

  28. 28.

    S. Michaela, M. Christian, S. Sophie, P. Veronique, K. Jaroslaw, M. Ralf, Thermal treatment of aerosol deposited NiMn2O4 NTC thermistors for improved aging stability. Sensors 18, 3982 (2018)

    Article  Google Scholar 

  29. 29.

    A.V. Salker, S.M. Gurav, Electronic and catalytic studies on Co1-xCuxMn2O4 for CO oxidation. J. Mater. Sci. 35, 4713–4719 (2000)

    CAS  Article  Google Scholar 

  30. 30.

    G. Na, Y.D. Li, Effects of Cd and Cd-Cu doping on the microstructure and electrical properties of NiMnCoO NTC ceramics. Adv. Mater. Res. 236–238, 1632–1635 (2011)

    Article  Google Scholar 

  31. 31.

    R. Jadhav, D. Kulkarni, V. Puri, Structural and electrical properties of fritless Ni(1–x)CuxMn2O4 (0 ≤ x ≤ 1) thick film NTC ceramic. J. Mater. Sci. Mater. Electron. 21, 503–508 (2010)

    CAS  Article  Google Scholar 

  32. 32.

    C. Zhao, B. Wang, P. Yang, L. Winnubst, C. Chen, Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics. J. Eur. Ceram. Soc. 28, 35–40 (2008)

    CAS  Article  Google Scholar 

  33. 33.

    G. Wang, H. Zhang, X. Sun, Y. Liu, Z. Li, Characterization of a new system of NTC temperature-sensitive ceramics based on Al/F modified NiO simple oxides. J. Mater. Sci. Mater. Electron. 28, 363–370 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    K. Park, D.Y. Bang, Electrical properties of Ni-Mn-Co-(Fe) oxide thick-film NTC thermistors prepared by screen printing. J. Mater. Sci. Mater. Electron. 14, 81–87 (2003)

    CAS  Article  Google Scholar 

  35. 35.

    F. Cheng, J. Wang, H. Zhang, A. Chang, W. Kong, B. Zhang, L. Chen, Phase transition and electrical properties of Ni1-xZnxMn2O4 (0 ≤x ≤ 1.0) NTC ceramics. J. Mater. Sci. Mater. Electron. 26, 1374–1380 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    J. Wang, J. Zhang, Structural and electrical properties of NiMgxMn2-xO4 NTC thermistors prepared by using sol-gel derived powders. Mater. Sci. Eng. B 176, 616–619 (2011)

    CAS  Article  Google Scholar 

  37. 37.

    C. Ma, H. Gao, Preparation and characterization of single-phase NiMn2O4 NTC ceramics by two-step sintering method. J. Mater. Sci. Mater. Electron. 28, 6699–6703 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    H.R. Jung, S.G. Lee, K.M. Kim, M.S. Kwon, Y.G. Kim, Preparation and electrical properties of nickel manganite Ni0.79Mn2.21O4 ceramics for NTC thermistors. J. Ceram. Process. Res. 18, 357–360 (2017)

    Google Scholar 

  39. 39.

    H.R. Jung, S.G. Lee, D.J. Lee, Y.O. Jo, Structural and electrical properties of nickel manganite ceramics for NTC thermistor material. Sci. Adv. Mater. 9, 1346–1349 (2017)

    CAS  Article  Google Scholar 

Download references


Authors would like to acknowledge the financial support of the National Natural Science Foundation of China (Grant No.61974114)

Author information



Corresponding authors

Correspondence to Mo Zhao or Zhimin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Chen, W., Wu, W. et al. Aging characteristic of Cu-doped nickel manganite NTC ceramics. J Mater Sci: Mater Electron 31, 11784–11790 (2020).

Download citation