A reduced graphene oxide/bi-MOF-derived carbon composite as high-performance microwave absorber with tunable dielectric properties


In this paper, a reduced graphene oxide/bi-MOF-derived carbon (RGO/bi-MDPC) composite is studied as high-performance microwave absorber with tunable dielectric properties. The dielectric parameter of the RGO/bi-MDPC could be optimized by changing annealing temperature. The optimal sample presents the excellent microwave absorbing performance with the effective absorption bandwidth covering the whole X band with a thickness of 3.4 mm while the minimum reflection coefficient reaches − 33.8 dB at 8.8 GHz with the thickness of 3.7 mm. The specific porous structure, residual oxygen functional groups, and abundant interface contribute to enhanced microwave absorption performance. This work indicates that the bi-MOF-derived porous carbon could be used as nanostructured phase to improve the microwave absorptive capacity of RGO composites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008)

    CAS  Google Scholar 

  2. 2.

    Y.-B. Tang, L.-C. Yin, Y. Yang, X.-H. Bo, Y.-L. Cao, H.-E. Wang, W.-J. Zhang, I. Bello, S.-T. Lee, H.-M. Cheng, Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano 6(3), 1970–1978 (2012)

    CAS  Google Scholar 

  3. 3.

    X. Huang, F. Liu, P. Jiang, T. Tanaka, Is graphene oxide an insulating material?, IEEE International Conference on Solid Dielectrics (ICSD), IEEE, 2013, pp. 904–907.

  4. 4.

    O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6), 711–723 (2010)

    CAS  Google Scholar 

  5. 5.

    Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Advanced Science 6(8), 1801057–1801080 (2019)

    Google Scholar 

  6. 6.

    M.S. Cao, X.X. Wang, M. Zhang, J.C. Shu, W.Q. Cao, H.J. Yang, X.Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Func. Mater. 29(25), 1807398–1807452 (2019)

    Google Scholar 

  7. 7.

    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)

    CAS  Google Scholar 

  8. 8.

    P. Song, C. Liang, L. Wang, H. Qiu, H. Gu, J. Kong, J. Gu, Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 181, 107698–107705 (2019)

    Google Scholar 

  9. 9.

    X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, J. Gu, Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composite A 128, 105670–105679 (2020)

    Google Scholar 

  10. 10.

    C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    CAS  Google Scholar 

  11. 11.

    M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403–16409 (2014)

    CAS  Google Scholar 

  12. 12.

    B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, Coupling hollow Fe3O4–Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8(6), 3730–3735 (2016)

    CAS  Google Scholar 

  13. 13.

    Q. Zeng, X.-H. Xiong, P. Chen, Q. Yu, Q. Wang, R.-C. Wang, H.-R. Chu, Air@rGO@Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance. J. Mater. Chem. C 4(44), 10518–10528 (2016)

    CAS  Google Scholar 

  14. 14.

    L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, L. Zhang, Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117(38), 19701–19711 (2013)

    CAS  Google Scholar 

  15. 15.

    J. Tang, S. Bi, X. Wang, G. Hou, X. Su, C. Liu, Y. Lin, H. Li, Excellent microwave absorption of carbon black/reduced graphene oxide composite with low loading. J. Mater. Sci. 54(22), 13990–14001 (2019)

    CAS  Google Scholar 

  16. 16.

    Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang, J. Zhang, C. Gong, High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes. J. Alloy. Compd. 810, 151950–151958 (2019)

    CAS  Google Scholar 

  17. 17.

    C. Fu, D. He, Y. Wang, X. Zhao, Enhanced microwave absorption performance of RGO-modified Co@C nanorods. Synth. Met. 257, 116187–116196 (2019)

    CAS  Google Scholar 

  18. 18.

    X. Yuan, R. Wang, W. Huang, Y. Liu, L. Zhang, L. Kong, S. Guo, Lamellar vanadium nitride nanowires encapsulated in graphene for electromagnetic wave absorption. Chem. Eng. J. 378(15), 122203–122213 (2019)

    CAS  Google Scholar 

  19. 19.

    L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019)

    CAS  Google Scholar 

  20. 20.

    J. Prasad, A.K. Singh, K.K. Haldar, M. Tomar, V. Gupta, K. Singh, CoFe2O4 nanoparticles decorated MoS2-reduced graphene oxide nanocomposite for improved microwave absorption and shielding performance. RSC Adv. 9(38), 21881–21892 (2019)

    CAS  Google Scholar 

  21. 21.

    H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017)

    CAS  Google Scholar 

  22. 22.

    H.L. Xu, X.W. Yin, M.H. Li, F. Ye, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, L.F. Cheng, Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132, 343–351 (2018)

    CAS  Google Scholar 

  23. 23.

    G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018)

    CAS  Google Scholar 

  24. 24.

    X. Zhang, J. Xu, H. Yuan, S. Zhang, Q. Ouyang, C. Zhu, X. Zhang, Y. Chen, Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Interfaces 11(42), 39100–39108 (2019)

    CAS  Google Scholar 

  25. 25.

    X. Zhang, J. Wang, X. Su, S. Huo, Facile synthesis of reduced graphene oxide-wrapped CNFs with controllable chemical reduction degree for enhanced microwave absorption performance. J. Colloid Interface Sci. 553, 402–408 (2019)

    CAS  Google Scholar 

  26. 26.

    S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao, T. Feng, C. Feng, D. Shi, H. Li, Y. Zhao, Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11(1), 76–92 (2019)

    Google Scholar 

  27. 27.

    Y. Wang, X. Gao, C. Lin, L. Shi, X. Li, G. Wu, Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber. J. Alloy. Compd. 785, 765–773 (2019)

    CAS  Google Scholar 

  28. 28.

    J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012)

    CAS  Google Scholar 

  29. 29.

    J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem. Int. Ed. 54(37), 10889–10893 (2015)

    CAS  Google Scholar 

  30. 30.

    Z. Cai, Z. Wang, J. Kim, Y. Yamauchi, Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 31(11), 1804903–1804931 (2019)

    Google Scholar 

  31. 31.

    B. You, N. Jiang, M. Sheng, W.S. Drisdell, J. Yano, Y. Sun, Bimetal–organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catalysis 5(12), 7068–7076 (2015)

    CAS  Google Scholar 

  32. 32.

    H. Xu, X. Yin, X. Fan, Z. Tang, Z. Hou, M. Li, X. Li, L. Zhang, L. Cheng, Constructing a tunable heterogeneous interface in bimetallic metal-organic frameworks derived porous carbon for excellent microwave absorption performance. Carbon 148, 421–429 (2019)

    CAS  Google Scholar 

  33. 33.

    H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang, H. Wei, L. Zhang, L. Cheng, Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 142, 346–353 (2019)

    CAS  Google Scholar 

  34. 34.

    X. Zhang, J. Guo, P. Guan, G. Qin, S.J. Pennycook, Gigahertz dielectric polarization of substitutional single niobium atoms in defective graphitic layers. Phys. Rev. Lett. 115(14), 147601 (2015)

    Google Scholar 

  35. 35.

    R. Che, L.-M. Peng, X.F. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004)

    CAS  Google Scholar 

  36. 36.

    J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu, G. Chen, J. Zhang, R. Che, Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 15(36), 1902885–1902895 (2019)

    Google Scholar 

  37. 37.

    H. Pan, X. Yin, J. Xue, L. Cheng, L. Zhang, In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 107, 36–45 (2016)

    CAS  Google Scholar 

  38. 38.

    J.H. Joshi, G.M. Joshi, M.J. Joshi, H.O. Jethva, K.D. Parikh, Raman, photoluminescence, and ac electrical studies of pure and l-serine doped ammonium dihydrogen phosphate single crystals: an understanding of defect chemistry in hydrogen bonding. New J. Chem. 42(21), 17227–17249 (2018)

    CAS  Google Scholar 

  39. 39.

    J.H. Joshi, G.M. Joshi, M.J. Joshi, K.D. Parikh, Complex impedance, FT-Raman, and photoluminescence spectroscopic studies of pure and L-phenylalanine doped ammonium dihydrogen phosphate single crystals: the correlation with hydrogen bonding defect. Ionics 25(7), 3223–3245 (2019)

    CAS  Google Scholar 

  40. 40.

    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107 (2000)

    CAS  Google Scholar 

  41. 41.

    A.C. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401–187405 (2006)

    CAS  Google Scholar 

  42. 42.

    J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017)

    CAS  Google Scholar 

  43. 43.

    J.H. Joshi, S. Kalainathan, D.K. Kanchan, M.J. Joshi, K.D. Parikh, Effect of l-threonine on growth and properties of ammonium dihydrogen phosphate crystal. Arab. J. Chem. 13(1), 1532–1550 (2020)

    CAS  Google Scholar 

  44. 44.

    W. Zhang, Y. Xu, L. Yuan, J. Cai, D. Zhang, Microwave absorption and shielding property of composites with FeSiAl and carbonous materials as filler. J. Mater. Sci. Technol. 28(10), 913–919 (2012)

    CAS  Google Scholar 

  45. 45.

    W. Li, C. Li, L. Lin, Y. Wang, J. Zhang, Foam structure to improve microwave absorption properties of silicon carbide/carbon material. J. Mater. Sci. Technol. 35(11), 2658–2664 (2019)

    Google Scholar 

  46. 46.

    X. Liu, N. Chai, Z. Yu, H. Xu, X. Li, J. Liu, X. Yin, R. Riedel, Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. J. Mater. Sci. Technol. 35(12), 2859–2867 (2019)

    Google Scholar 

  47. 47.

    C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906–072909 (2011)

    Google Scholar 

  48. 48.

    P. Wang, J. Zhang, G. Wang, B. Duan, D. He, T. Wang, F. Li, Synthesis and characterization of MoS2/Fe@Fe3O4 nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences. J. Mater. Sci. Technol. 35(9), 1931–1939 (2019)

    Google Scholar 

  49. 49.

    L. Van Beek, The Maxwell-Wagner-Sillars effect, describing apparent dielectric loss in inhomogeneous media. Physica 26(1), 66–68 (1960)

    Google Scholar 

  50. 50.

    J. Song, L. Wang, N. Xu, Q. Zhang, Microwave absorbing properties of magnesium-substituted MnZn ferrites prepared by citrate-EDTA complexing method. J. Mater. Sci. Technol. 26(9), 787–792 (2010)

    CAS  Google Scholar 

Download references


The authors would like to give their special thanks to Prof. Xiaowei Yin for his kind guidance and help on this work. This work was financially supported by the National Natural Science Foundation of China (Grant No.: 51821091), the National Science Fund for Distinguished Young Scholars (Grant No.: 51725205).

Author information



Corresponding author

Correspondence to Hailong Xu.

Ethics declarations

Competing interest:

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1508 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Zhang, A., Li, M. et al. A reduced graphene oxide/bi-MOF-derived carbon composite as high-performance microwave absorber with tunable dielectric properties. J Mater Sci: Mater Electron 31, 11774–11783 (2020). https://doi.org/10.1007/s10854-020-03729-5

Download citation