Effect of pH on single phase BaFe12O19 nanoparticles and their improved magnetic properties


Room temperature ferromagnetic measurements were made on BaFe12O19 nanoparticles that had been synthesized via a co-precipitation method at various pH values between 9 and 14 and then calcined at temperatures between 800 and 1000 °C. The synthesized samples were characterized using X-ray diffraction (XRD), transmission electron microscopy, X-ray absorption near edge structure, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The samples, prepared starting from pH 13 and calcined at temperatures between 800 and 1000 °C, exhibited XRD peaks corresponding to a single phase hexagonal BaFe12O19. The crystallite sizes increased from 60 ± 6 to 77 ± 8 nm with increasing calcination temperature. Their nanoparticle morphology showed rod-like shapes with diameters of 81 ± 13 and 94 ± 15 nm and lengths of 207 ± 25 and 254 ± 40 nm for samples calcined at 900 and 1000 °C, respectively. The presence of Ba2+ and Fe3+ in all samples was confirmed. All synthesized samples showed hard ferromagnetic behavior at room temperature, but a single phase BaFe12O19 at pH 13 achieved a maximal saturation magnetization (MS), 67 emu/g, which was higher than samples prepared at other pH values. The highest MS value, 68 emu/g, was on the sample calcined at 1000 °C. MS values are related to size effects and the O2−/Fe3+ ion ratio. The origin of these phenomena is discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    K.S. Martirosyan, E. Galstyan, S.M. Hossain, Y.-J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: synthesis and magnetic properties. Mater. Sci. Eng. B 176(1), 8–13 (2011). https://doi.org/10.1016/j.mseb.2010.08.005

    CAS  Article  Google Scholar 

  2. 2.

    Z. Mosleh, P. Kameli, M. Ranjbar, H. Salamati, Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceram. Int. 40, 7279–7284 (2014). https://doi.org/10.1016/j.ceramint.2013.12.068

    CAS  Article  Google Scholar 

  3. 3.

    L. Zhao, X. Lv, Y. Wei, C. Ma, L. Zhao, Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system. J. Magn. Magn. Mater. 332, 44–47 (2013). https://doi.org/10.1016/j.jmmm.2012.11.056

    CAS  Article  Google Scholar 

  4. 4.

    G.H. Mu, N. Chen, X.F. Pan, H.G. Shen, M.Y. Gu, Preparation and microwave absorption properties of barium ferrite nanorods. Mater. Lett. 62, 840–842 (2008). https://doi.org/10.1016/j.matlet.2007.06.074

    CAS  Article  Google Scholar 

  5. 5.

    K.B. Paul, Magnetic and structural properties of Ba M-type ferrite-composite powders. Phys. B 388, 337–343 (2007). https://doi.org/10.1016/j.physb.2006.06.137

    CAS  Article  Google Scholar 

  6. 6.

    H.F. Yu, P.C. Liu, Effects of pH and calcination temperatures on the formation of citrate-derived hexagonal barium ferrite particles. J. Alloy. Compd. 416, 222–227 (2006). https://doi.org/10.1016/j.jallcom.2005.08.024

    CAS  Article  Google Scholar 

  7. 7.

    T. Yamauchi, Y. Tsukahara, T. Sakata, H. Mori, T. Chikata, S. Katoh, Y. Wada, Barium ferrite powders prepared by microwave-induced hydrothermal reaction and magnetic property. J. Magn. Magn. Mater. 321, 8–11 (2009). https://doi.org/10.1016/j.jmmm.2008.07.005

    CAS  Article  Google Scholar 

  8. 8.

    H.-F. Yu, BaFe12O19 powder with high magnetization prepared by acetone-aided coprecipitation. J. Magn. Magn. Mater. 341, 79–85 (2013). https://doi.org/10.1016/j.jmmm.2013.04.030

    CAS  Article  Google Scholar 

  9. 9.

    S.S. Fortes, J.G.S. Duque, M.A. Macêdo, Nanocrystals of BaFe12O19 obtained by the proteic sol–gel process. Phys. B 384, 88–90 (2006). https://doi.org/10.1016/j.physb.2006.05.158

    CAS  Article  Google Scholar 

  10. 10.

    S. Torres-Cadenas, J. Reyes-Gasga, A. Bravo-Patiño, I. Betancourt, M.E. Contreras-García, Morphological and magnetic properties of sol-gel synthetized meso and macroporous spheres of barium hexaferrite (BaFe12O19). J. Magn. Magn. Mater. 432, 410–417 (2017). https://doi.org/10.1016/j.jmmm.2017.02.018

    CAS  Article  Google Scholar 

  11. 11.

    R. Peymanfar, M. Rahmanisaghieh, A. Ghaffari, Y. Yassi, Preparation and identification of BaFe2O4 nanoparticles by the Sol-Gel route and investigation of its microwave absorption characteristics at Ku-Band frequency using silicone rubber medium. Proceedings 2, 1154 (2018). https://doi.org/10.3390/ecms2018-05234

    Article  Google Scholar 

  12. 12.

    J. Wang, Y. Wu, Y. Zhu, P. Wang, Formation of rod-shaped BaFe12O19 nanoparticles with well magnetic properties. Mater. Lett. 61, 1522–1525 (2007). https://doi.org/10.1016/j.matlet.2006.07.183

    CAS  Article  Google Scholar 

  13. 13.

    A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties, J Mater. Sci.-Mater. El. 30(2), 1–12 (2019). https://doi.org/10.1007/s10854-019-00883-3

    CAS  Article  Google Scholar 

  14. 14.

    X. Xu, J. Park, Y.-K. Hong, A.M. Lane, Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres. Mater. Lett. 144, 119–122 (2015). https://doi.org/10.1016/j.matlet.2015.01.034

    CAS  Article  Google Scholar 

  15. 15.

    F. Huixia, B. Dezhong, T. Lin, C. Nali, W. Yueyi, Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites. J. Magn. Magn. Mater. 433, 1–7 (2017). https://doi.org/10.1016/j.jmmm.2016.12.118

    CAS  Article  Google Scholar 

  16. 16.

    A. Bahadur, A. Saeed, S. Iqbal, M. Shoaib, I. Ahmad, M.S. Rahman, M.I. Bashir, M. Yaseen, W. Hussain, Morphological and magnetic properties of BaFe12O19 nanoferrite: a promising microwave absorbing material. Ceram. Int. 43, 7346–7350 (2017). https://doi.org/10.1016/j.ceramint.2017.03.039

    CAS  Article  Google Scholar 

  17. 17.

    M.A. Amer, T.M. Meaz, S.S. Attalah, A.I. Ghoneim, Structural and magnetic studies of Ti4+ substituted M-type BaFe12O19 hexa-nanoferrites. Mater. Sci. Semicond. Process. 40, 374–382 (2015). https://doi.org/10.1016/j.mssp.2015.07.007

    CAS  Article  Google Scholar 

  18. 18.

    A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 7, 3007–3015 (2017). https://doi.org/10.1016/j.rinp.2017.07.066

    Article  Google Scholar 

  19. 19.

    J. Yu, S. Tang, L. Zhai, Y. Shi, Y. Du, Synthesis and magnetic properties of single-crystalline BaFe12O19 nanoparticles. Phys. B 404, 4253–4256 (2009). https://doi.org/10.1016/j.physb.2009.08.043

    CAS  Article  Google Scholar 

  20. 20.

    A. Bahadur, S. Iqbal, A. Saeed, M.I. Bashir, M. Shoaib, M. Waqas, G. Shabir, A. Jabbar, Green synthesis of ultrafine super-paramagnetic magnetite nano-fluid: a magnetic and dielectric study. Chem. Pap. 71, 1445–1451 (2017). https://doi.org/10.1007/s11696-017-0138-3

    CAS  Article  Google Scholar 

  21. 21.

    L. Wang, J. Zhang, Q. Zhang, N. Xu, J. Song, XAFS and XPS studies on site occupation of Sm3+ ions in Sm doped M-type BaFe12O19. J. Magn. Magn. Mater. 377, 362–367 (2015). https://doi.org/10.1016/j.jmmm.2014.10.097

    CAS  Article  Google Scholar 

  22. 22.

    J. Xiao, W. Yang, S. Gao, C. Sun, Q. Li, Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination. J. Mater. Sci. Technol. 34, 2331–2336 (2018). https://doi.org/10.1016/j.jmst.2018.06.001

    Article  Google Scholar 

  23. 23.

    Y. Kumar, A. Sharma, P.M. Shirage, Impact of different morphologies of CoFe2O4 nanoparticles for tuning of structural, optical and magnetic properties. J. Alloy. Compd. 778, 398–409 (2019). https://doi.org/10.1016/j.jallcom.2018.11.128

    CAS  Article  Google Scholar 

  24. 24.

    X. Ma, P. Lu, P. Wu, Structural, optical and magnetic properties of CeO2 nanowires with nonmagnetic Mg2+ doping. J. Alloy. Compd. 734, 22–28 (2018). https://doi.org/10.1016/j.jallcom.2017.11.023

    CAS  Article  Google Scholar 

  25. 25.

    G.F. Moreira, E.R. Peçanha, M.B.M. Monte, L.S. Leal Filho, F. Stavale, XPS study on the mechanism of starch-hematite surface chemical complexation. Miner. Eng. 110, 96–103 (2017). https://doi.org/10.1016/j.mineng.2017.04.014

    CAS  Article  Google Scholar 

  26. 26.

    Q.-J. Sun, X.-G. Lu, G.-Y. Liang, Controlled template-free hydrothermal synthesis of hematite nanoplatelets. Mater. Lett. 64, 2006–2008 (2010). https://doi.org/10.1016/j.matlet.2010.06.025

    CAS  Article  Google Scholar 

  27. 27.

    C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440–444 (1951). https://doi.org/10.1103/PhysRev.81.440

    CAS  Article  Google Scholar 

  28. 28.

    B.J. Rani, M. Ravina, B. Saravanakumar, G. Ravi, V. Ganesh, S. Ravichandran, R. Yuvakkumar, Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Struct. Nano-Obj 14, 84–91 (2018). https://doi.org/10.1016/j.nanoso.2018.01.012

    CAS  Article  Google Scholar 

  29. 29.

    S. Moosavi, S. Zakaria, C.H. Chia, S. Gan, N.A. Azahari, H. Kaco, Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals. Ceram. Int. 43, 7889–7894 (2017). https://doi.org/10.1016/j.ceramint.2017.03.110

    CAS  Article  Google Scholar 

  30. 30.

    A.A. Sattar, H.M. El-Sayed, I. Alsuqia, Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J. Magn. Magn. Mater. 395, 89–96 (2015). https://doi.org/10.1016/j.jmmm.2015.07.039

    CAS  Article  Google Scholar 

  31. 31.

    O. Saensuk, S. Phokha, A. Bootchanont, S. Maensiri, E. Swatsitang, Fabrication and magnetic properties of NiFe2O4 nanofibers obtained by electrospinning. Ceram. Int. 41, 8133–8141 (2015). https://doi.org/10.1016/j.ceramint.2015.03.019

    CAS  Article  Google Scholar 

  32. 32.

    M. Kooti, A. Naghdi Sedeh, Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method. J. Mater. Sci. Technol. 29(1), 34–38 (2013). https://doi.org/10.1016/j.jmst.2012.11.016

    CAS  Article  Google Scholar 

  33. 33.

    J. Feng, Y. Wang, L. Zou, B. Li, X. He, Y. Ren, Y. Lv, Z. Fan, Synthesis of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue. J. Colloid Interface Sci. 438, 318–322 (2015). https://doi.org/10.1016/j.jcis.2014.10.009

    CAS  Article  Google Scholar 

  34. 34.

    A. Bahadur, A. Saeed, M. Shoaib, S. Iqbal, M.I. Bashir, M. Waqas, M.N. Hussain, N. Abbas, Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: dielectric, magnetic, thermal and optical studies. Mater. Chem. Phys. 198, 229–235 (2017). https://doi.org/10.1016/j.matchemphys.2017.05.061

    CAS  Article  Google Scholar 

  35. 35.

    Z. Durmus, H. Sozeri, M.S. Toprak, A. Bayka, The effect of condensation on the morphology and magnetic properties of modified barium hexaferrite (BaFe12O19). Nano-Micro Lett. 3(2), 108–114 (2011). https://doi.org/10.3786/nml.v3i2.p108-114

    CAS  Article  Google Scholar 

  36. 36.

    L. Wang, X. Lu, C. Han, R. Lu, S. Yang, X. Song, Electrospun hollow cage-like α-Fe2O3 microspheres: synthesis, formation mechanism, and morphology-preserved conversion to Fe nanostructures. Cryst. Eng. Commun. 16, 10618–10623 (2014). https://doi.org/10.1039/c4ce01485e

    CAS  Article  Google Scholar 

Download references


This work was supported financially by Udon Thani Rajabhat University Research and its Development Institute (Grant No. 343133 (2560A16202041)) and the Research Network NANOTEC (RNN) program of the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Higher Education, Science, Research and Innovation (MHESI) and Khon Kaen University, Thailand. The authors would like to thank the SUT-NANOTEC-SLRI Joint Research Facility, Synchrotron Light Research Institute (SLRI), Thailand for use of their XANES and XPS facilities and the Department of Physics, Khon Kaen University, for providing the VSM facilities.

Author information



Corresponding author

Correspondence to Sumalin Phokha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yensano, R., Phokha, S. Effect of pH on single phase BaFe12O19 nanoparticles and their improved magnetic properties. J Mater Sci: Mater Electron 31, 11764–11773 (2020). https://doi.org/10.1007/s10854-020-03728-6

Download citation