Preparation and properties of calcium hexaluminate blue ceramics


The doping of nickel and titanium is evaluated with the goal of coloring calcium hexaluminate ceramic (CaAl12−2xNixTixO19) and improving mechanical properties. The samples prepared by solid-phase reaction are studied with X-ray diffraction, UV–Vis diffuse reflection, a Konica Minolta colorimeter, scanning electron microscopy, and an indentation test of hardness. The increase in dopant content increases the fracture toughness of CaAl12O19, enabling us to obtain a pure blue ceramic material with a doping amount of x = 0.8. With the increase of Ni2+ and Ti4+, the color of the sample changes. Among the samples, the most vivid blue hue is obtained for an x value of 0.8 with a reflection peak at 473 nm in the UV spectrum and a blueness value (− b*) of 49.2 in the CIE L*a*b* system, which is bluer than cobalt-doped ceramics. The emission spectra of CaAl12O19 in the visible region confirmed that Ni2+ replaces Al3+ in the tetrahedron and causes an electron transition. The results also indicate that the incorporation of Ni2+ and Ti4+ increases the hardness of the sample and the fracture toughness, with the hardness of pure calcium aluminate increased by 22.1%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    H. Sun, M. Nie, Shandong Metall. 39(5), 39–42 (2019)

    Google Scholar 

  2. 2.

    Y.L. Yuan, X. Chen, H.M. Wang, Q. Chen, J. China Acad. J. Electron. 82(8), 696–705 (2019)

    Google Scholar 

  3. 3.

    V. Singh, T.K.G. Rao, J.J. Zhu, J. Lumin. 126(1), 1–6 (2007)

    CAS  Article  Google Scholar 

  4. 4.

    G. Costa, M.J. Ribeiro, W. Hajjaji, M.P. Seabra et al., J. Eur. Ceram. Soc. 29, 2671–2678 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    F. Gaabel, M. Khlifi, N. Hamdaoui et al., J. Mater. Sci. Mater. Electron. 30(16), 6583–6592 (2019)

    Article  Google Scholar 

  6. 6.

    I.S. Ahmed, H.A. Dessouki, A.A. Ali, Spectrochim. Acta 71(2), 616–620 (2009)

    Article  Google Scholar 

  7. 7.

    K. Sawinder, S. Paramjit, S.G. Panesar, et al., Pigments Resin Technol. 48(4), 301–308 (2019)

    Article  Google Scholar 

  8. 8.

    S. Hussain, M.S. Javed, S. Asim, A. Shaheen, M. Wang et al., Ceram. Int. 46, 6406–6412 (2009)

    Article  Google Scholar 

  9. 9.

    V.S. Rangasamy, S. Thayumanasundaram, Electrochim. Acta 276(10), 102–110 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    M. Dai, K. Qiu, P. Zhang, et al., J. Mater. Sci. Mater. Electron. 30(10), 9184–9193 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    C. Li, J. Wang, et al., Comprehensive utilization of resources in China. in: IOP Conference Series Earth and Environmental Science (2018)

  12. 12.

    H. Xu, J. Zhu, et al., Resour. Environ. Eng. 6(1) (2018)

  13. 13.

    M. Ardit, S. Borcnescu, G. Cruciani et al., J. Am. Ceram. Soc. 99, 1749–1760 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    E.A.B. Hughes, S.C. Cox, M.E. Cooke et al., Adv. Healthcare Mater. 7, 746–753 (2018)

    Article  Google Scholar 

  15. 15.

    R.C. Peterson, W. Nelson, B. Madu, et al., Am Miner. 92(10), 1756–1759 (2007)

    CAS  Article  Google Scholar 

  16. 16.

    J. Li, E.A. Medina, A.W. Sleight, M.A. Subramanian et al., Progr. Solid State Chem. 44(11), 107–122 (2016)

    Article  Google Scholar 

  17. 17.

    S. Hussain, X. Yang, S. Asim, G. Liu, M.K. Aslam, A. Shaheen, M.S. Javed et al., Chem Eng J (2019).

    Article  Google Scholar 

  18. 18.

    R. Ianos, I. Lazau, C. Pacurariu, P. Barvinschi et al., Cement Concrete Res. 39(7), 566–572 (2009)

    CAS  Article  Google Scholar 

  19. 19.

    L. Wei, H. Zhang, C. Shi et al., Adv. Opt. Mater. 4(3), 427–434 (2016)

    Article  Google Scholar 

  20. 20.

    T. Ahmadi, A. Monshi, V. Mortazavi et al., Ceram. Int. 40(6), 8341–8349 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    F.C. Chang, K.L. Cheng et al., Anal. Chim Acta 76(1), 177–182 (1975)

    CAS  Article  Google Scholar 

  22. 22.

    L.H.C. Andrade, S.M. Lima, A. Novatski et al., Phys. Rev. B 78(78), 362–373 (2008)

    Google Scholar 

  23. 23.

    H.T. Banks, K.L. Sutton, W.C. Thompson et al., Bull. Math. Biol. 73(1), 116–150 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    Y. Chen, X. Ma, Y. Tang et al., Kuei Suan Jen Hsueh Pao [J. Chin. Ceram. Soc.] 43(9), 1214–1219 (2015)

    CAS  Google Scholar 

  25. 25.

    W. Hajjaji, G. Costa, C. Zanelli et al., J. Eur. Ceram. Soc. 32(4), 753–764 (2012)

    CAS  Article  Google Scholar 

  26. 26.

    M. Pansini, G. Dell'Agli, A. Marocco et al., J. Biomed. Nanotechnol. 13(3), 337 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    N. Gorodylova, V. Kosinova, Z. Dohnalova et al., Dyes Pigments 98(3), 393–404 (2013)

    CAS  Article  Google Scholar 

Download references


National Natural Science Foundation of China (51762036); Inner Mongolia Natural Science Foundation (2017BS0504, 2017MS0221); Inner Mongolia Autonomous Region Higher Education School “Youth Technology Talent Support Program” Category A (NJYT-19-A20).

Author information



Corresponding author

Correspondence to Qingchun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rui, G., Wang, Q., Bao, J. et al. Preparation and properties of calcium hexaluminate blue ceramics. J Mater Sci: Mater Electron 31, 11748–11757 (2020).

Download citation