Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications

Abstract

The aim of this work is to assess the prospects of using CuBi2O4 composite films of various thicknesses as protective coatings against exposure to ionizing radiation of up to 150 MeV and doses of 1 × 1013–1015 ion/cm2, characteristic of the effects of overlapping cascade defects in the target. The relevance and novelty of the study lies in the search for alternative sources of screening for the effects of radiation damage to microelectronic devices without a significant increase in the mass–overall dimensions of microcircuits. This paper presents the results of a study of the radiation resistance of the structural, mechanical, and strength properties of synthesized CuBi2O4 films depending on the film thickness and radiation dose. Electrochemical deposition was used as a synthesis method, which allows one to control with high accuracy the phase composition and morphology of the synthesized films. Synthesized films were shown to possess a significant degree of stability to irradiation with the increasing film thickness from 5 to 10 μm. Moreover, in the case of films with a thickness of 3 μm, a decrease in the strength and structural properties is due to phase transition processes initiated by irradiation due to the transfer of energy to the crystalline subsystem as a result of elastic and inelastic collisions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

References

  1. 1.

    Y. Al-Douri et al., Morphology, analysis and properties studies of CdS nanostructures under thiourea concentration effect for photovoltaic applications. Int. J. Electrochem. Sci. 8, 10688–10696 (2013)

    CAS  Google Scholar 

  2. 2.

    M. Bilal Tahir, K.N. Riaz, A.M. Asiri, Boosting the performance of visible light-driven WO3/g-C3N4 anchored with BiVO4 nanoparticles for photocatalytic hydrogen evolution. Int. J. Energy Res. 43(11), 5747–5758 (2019)

    CAS  Google Scholar 

  3. 3.

    Y. Al-Douri et al., Synthesis and characterization of Cu2CdSnS4 quaternary alloy nanostructures. Int. J. Electrochem. Sci 13, 6693–6707 (2018)

    CAS  Google Scholar 

  4. 4.

    M.B. Tahir, G. Nabi, N.R. Khalid, Enhanced photocatalytic performance of visible-light active graphene-WO3 nanostructures for hydrogen production. Mater. Sci. Semicond. Process. 84, 36–41 (2018)

    CAS  Google Scholar 

  5. 5.

    K. Shahzad, M.B. Tahir, M. Sagir, Engineering the performance of heterogeneous WO3/fullerene@ Ni3B/Ni (OH) 2 photocatalysts for hydrogen generation. Int. J. Hydrogen Energy 44(39), 21738–21745 (2019)

    CAS  Google Scholar 

  6. 6.

    K. Omar et al., Stiffness properties of porous silicon nanowires fabricated by electrochemical and laser-induced etching. Superlattices Microstruct. 50(2), 119–127 (2011)

    CAS  Google Scholar 

  7. 7.

    M.B. Tahir et al., Fabrication of heterogeneous photocatalysts for insight role of carbon nanofibre in hierarchical WO3/MoSe2 composite for enhanced photocatalytic hydrogen generation. Ceram. Int. 45(5), 5547–5552 (2019)

    CAS  Google Scholar 

  8. 8.

    M. Sagir et al., Enhanced photocatalytic performance of CdO-WO3 composite for hydrogen production. Int. J. Hydrogen Energy 44(45), 24690–24697 (2019)

    Google Scholar 

  9. 9.

    M.B. Tahir et al., WO 3 nanostructures-based photocatalyst approach towards degradation of RhB dye. J. Inorg. Organometall. Polym. Mater. 28(3), 1107–1113 (2018)

    CAS  Google Scholar 

  10. 10.

    T. Iqbal et al., The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environ. Sci. Pollut. Res. 26(11), 10515–10528 (2019)

    Google Scholar 

  11. 11.

    M.B. Tahir et al., Synthesis of nanostructured based WO 3 materials for photocatalytic applications. J. Inorg. Organometall. Polym. Mater. 28(3), 777–782 (2018)

    CAS  Google Scholar 

  12. 12.

    Y. Wu et al., Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid pn heterojunction interfacial effect. J. Hazard. Mater. 347, 412–422 (2018)

    CAS  Google Scholar 

  13. 13.

    M.B. Tahir et al., Role of MoSe2 on nanostructures WO3-CNT performance for photocatalytic hydrogen evolution. Ceram. Int. 44(6), 6686–6690 (2018)

    CAS  Google Scholar 

  14. 14.

    M.B. Tahir et al., Role of europium on WO3 performance under visible-light for photocatalytic activity. Ceram. Int. 44(5), 5705–5709 (2018)

    CAS  Google Scholar 

  15. 15.

    N.R. Khalid et al., The role of graphene and europium on TiO2 performance for photocatalytic hydrogen evolution. Ceram. Int. 44(1), 546–549 (2018)

    CAS  Google Scholar 

  16. 16.

    M.B. Tahir, M. Sagir, Carbon nanodots and rare metals (RM= La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 209, 94–102 (2019)

    Google Scholar 

  17. 17.

    K. Gherab et al., Fabrication and characterizations of Al nanoparticles doped ZnO nanostructures-based integrated electrochemical biosensor. J. Mater. Res. Technol. 9(1), 857–867 (2020)

    CAS  Google Scholar 

  18. 18.

    Y.A. Wahab et al., Uniformity improvement by integrated electrochemical-plating process for CMOS logic technologies. J. Manuf. Processes 38, 422–431 (2019)

    Google Scholar 

  19. 19.

    M.B. Tahir, Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation. Int. J. Hydrogen Energy 44(32), 17316–17322 (2019)

    CAS  Google Scholar 

  20. 20.

    A.A. Odeh et al., A needle-like Cu 2 CdSnS 4 alloy nanostructure-based integrated electrochemical biosensor for detecting the DNA of Dengue serotype 2. Microchim. Acta 184(7), 2211–2218 (2017)

    Google Scholar 

  21. 21.

    A.S. Ibraheam et al., electrical, optical and structural properties of Cu 2 Zn 0.8 Cd 0.2 SnS 4 quinternary alloy nanostructures synthesized by spin coating technique. Int. J. Electrochem. Sci. 10, 9863–9876 (2015)

    CAS  Google Scholar 

  22. 22.

    A.M. Mohammed et al., Application of gold nanoparticles for electrochemical DNA biosensor. J. Nanomater. (2014). https://doi.org/10.1155/2014/683460

    Article  Google Scholar 

  23. 23.

    H.R. Abd et al., Alternative-current electrochemical etching of uniform porous silicon for photodetector applications. Int. J. Electrochem. Sci. 8, 11461–11473 (2013)

    CAS  Google Scholar 

  24. 24.

    M.B. Tahir, Construction of MoS 2/CND-WO 3 ternary composite for photocatalytic hydrogen evolution. J. Inorg. Organomet. Polym Mater. 28(5), 2160–2168 (2018)

    CAS  Google Scholar 

  25. 25.

    N.K. Hassan et al., Current dependence growth of ZnO nanostructures by electrochemical deposition technique. Int. J. Electrochem. Sci. 7, 4625–4635 (2012)

    CAS  Google Scholar 

  26. 26.

    M. Bilal Tahir et al., Role of fullerene to improve the WO3 performance for photocatalytic applications and hydrogen evolution. Int. J. Energy Res. 42(15), 4783–4789 (2018)

    CAS  Google Scholar 

  27. 27.

    N. Gordillo et al., On the thermal stability of the nanostructured tungsten coatings. Surf. Coat. Technol. 325, 588–593 (2017)

    CAS  Google Scholar 

  28. 28.

    N. Panich, Y. Sun, Mechanical properties of TiB2-based nanostructured coatings. Surf. Coat. Technol. 198(1-3), 14–19 (2005)

    CAS  Google Scholar 

  29. 29.

    A. Vereschaka et al., Investigation of performance and cutting properties of carbide tool with nanostructured multilayer Zr-ZrN-(Zr 0.5, Cr 0.3, Al 0.2) N coating. Int. J. Adv. Manuf. Technol. 102(9–12), 2953–2965 (2019)

    Google Scholar 

  30. 30.

    A. Kozlovskiy et al., Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum 164, 224–232 (2019)

    CAS  Google Scholar 

  31. 31.

    L. Vernhes, M. Azzi, J.E. Klemberg-Sapieha, Alternatives for hard chromium plating: nanostructured coatings for severe-service valves. Mater. Chem. Phys. 140(2-3), 522–528 (2013)

    CAS  Google Scholar 

  32. 32.

    N.N. Voevodin et al., Nanostructured coatings approach for corrosion protection. Prog. Org. Coat. 47(3-4), 416–423 (2003)

    CAS  Google Scholar 

  33. 33.

    K.V. Smyrnova et al., Microstructure and physical–mechanical properties of (TiAlSiY) N nanostructured coatings under different energy conditions. Met. Mater. Int. 24(5), 1024–1035 (2018)

    CAS  Google Scholar 

  34. 34.

    J. Lawal et al., Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surf. Coat. Technol. 310, 59–69 (2017)

    CAS  Google Scholar 

  35. 35.

    A. Kozlovskiy, I. Kenzhina, M. Zdorovets, Synthesis, phase composition and magnetic properties of double perovskites of A (FeM) O4–x type (A= Ce; M= Ti). Ceram. Int. 45(7), 8669–8676 (2019)

    CAS  Google Scholar 

  36. 36.

    S. Lang et al., Characterization of nanostructured coatings based on oxides for tribological applications. Surf. Coat. Technol. 180, 85–89 (2004)

    Google Scholar 

  37. 37.

    K. Dukenbayev et al., Study of the effect of irradiation with Fe7+ ions on the structural properties of thin TiO2 foils. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/aafcbc

    Article  Google Scholar 

  38. 38.

    S.V. Konstantinov, F.F. Komarov, Effects of nitrogen selective sputtering and flaking of nanostructured coating TiN, TiAlN, TiAlYN, TiCrN, (TiHfZrVNb) N under Helium Ion Irradiation. Acta Phys. Polon. A (2019). https://doi.org/10.12693/APhysPolA.136.303

    Article  Google Scholar 

  39. 39.

    F. Veronesi, G. Boveri, M. Raimondo, Amphiphobic nanostructured coatings for industrial applications. Materials 12(5), 787 (2019)

    CAS  Google Scholar 

  40. 40.

    F.F. Komarov et al., Effect of Helium ion irradiation on the structure, the phase stability, and the microhardness of TiN, TiAlN, and TiAlYN nanostructured coatings. Tech. Phys. 61(5), 696–702 (2016)

    CAS  Google Scholar 

  41. 41.

    A.J. van Vuuren et al., Radiation tolerance of nanostructured ZrN coatings against swift heavy ion irradiation. J. Nucl. Mater. 442(1–3), 507–511 (2013)

    Google Scholar 

  42. 42.

    J. Yang et al., Enhanced photoelectrochemical hydrogen evolution at p-type CuBi2O4 photocathode through hypoxic calcination. Int. J. Hydrogen Energy 43(20), 9549–9557 (2018)

    CAS  Google Scholar 

  43. 43.

    S.P. Berglund et al., Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem. Mater. 28(12), 4231–4242 (2016)

    CAS  Google Scholar 

  44. 44.

    J. Alam et al., Corrosion-protective performance of nano polyaniline/ferrite dispersed alkyd coatings. J. Coat. Technol. Res. 5(1), 123–128 (2008)

    CAS  Google Scholar 

  45. 45.

    D. Kang et al., Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-doped CuBi2O4 photocathodes. Chem. Mater. 28(12), 4331–4340 (2016)

    CAS  Google Scholar 

  46. 46.

    Y.-H. Choi et al., p-Type CuBi2O4 thin films prepared by flux-mediated one-pot solution process with improved structural and photoelectrochemical characteristics. Mater. Lett. 188, 192–196 (2017)

    CAS  Google Scholar 

  47. 47.

    A.A. Aref et al., Preparation and electrochemical capacitance of MnO2 thin films doped by CuBi2O4. Mater. Sci. Semicond. Process. 29, 262–271 (2015)

    CAS  Google Scholar 

  48. 48.

    A.L. Kozlovskiy, M.V. Zdorovets, Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron. 30(12), 11819–11832 (2019)

    CAS  Google Scholar 

  49. 49.

    U. Saha, K. Devan, S. Ganesan, A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013. J. Nucl. Mater. 503, 30–41 (2018)

    CAS  Google Scholar 

  50. 50.

    K. Baishya et al., Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation. Appl. Phys. A 124(10), 704 (2018)

    Google Scholar 

  51. 51.

    K. Tinishbaeva et al., Implantation of low-energy Ni 12+ ions to change structural and strength characteristics of ceramics based on SiC. J. Mater. Sci. Mater. Electron. 31(3), 2246–2256 (2020)

    CAS  Google Scholar 

  52. 52.

    Y. Nakabayashi, M. Nishikawa, Y. Nosaka, Fabrication of CuBi2O4 photocathode through novel anodic electrodeposition for solar hydrogen production. Electrochim. Acta 125, 191–198 (2014)

    CAS  Google Scholar 

  53. 53.

    C. Henmi, Kusachiite, CuBi2O4, a new mineral from Fuka, Okayama Prefecture, Japan. Miner. Mag. 59, 545–548 (1995)

    CAS  Google Scholar 

  54. 54.

    R.J. Schiltz Jr., E.R. Stevens, O.N. Carlson, The thorium-copper system. J. Less-Common Metals 25, 175–18533 (1971)

    CAS  Google Scholar 

  55. 55.

    D.I. Tishkevich et al., Function composites materials for shielding applications: correlation between phase separation and attenuation properties. J. Alloy. Compd. 771, 238–245 (2019)

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan (Grant AP05134068).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskiy.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadyrzhanov, K.K., Shlimas, D.I., Kozlovskiy, A.L. et al. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J Mater Sci: Mater Electron 31, 11729–11740 (2020). https://doi.org/10.1007/s10854-020-03724-w

Download citation