Effect of thermal treatment on the structural, electrical, and dielectric properties of volcanic scoria

Abstract

The effects of thermal treatment on the structural, electrical, and dielectric properties of scoria collected from Harrat Rahat in Saudi Arabia have been investigated. The raw scoria was thermally treated at two different temperatures (800 and 1000 °C). The crystalline phase, morphology, and chemical group functions of natural and treated scoria samples were studied using XRD, SEM, FTIR/Raman spectroscopies, respectively. The XRD results showed no apparent differences between the raw sample and treated at the temperature of 800 °C. While it showed a decrease in the intensities of the XRD pattern and Raman spectra of the scoria treated at the temperature of 1000 °C, this could be attributed to the formation of a hematite–ilmenite solid solution. The tested raw scoria showed excellent thermal stability up to the temperature of 800 °C. At higher temperatures, however, its mineral and chemical compositions can be slightly affected. Electrical and dielectric properties were explored in detail at different temperatures and frequencies. The results did not show any considerable changes between raw and treated scoria samples. Likewise, conductivities and dielectric constants revealed stable values up to 700 K. This type of scoria, therefore, can be a promising material for use as high-voltage power insulators.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    P.N. Lemougna, U.F. Chinje Melo, M.-P. Delplancke, H. Rahier, Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram. Int. 40(1 Part A), 811–820 (2014). https://doi.org/10.1016/j.ceramint.2013.06.072

    CAS  Article  Google Scholar 

  2. 2.

    D.B. Dingwell, Y. Lavallée, U. Kueppers, Volcanic ash: a primary agent in the Earth system. Phys. Chem. Earth Parts A/B/C 45–46, 2–4 (2012). https://doi.org/10.1016/j.pce.2011.07.007

    Article  Google Scholar 

  3. 3.

    L.N. Tchadjie, S.O. Ekolu, Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J. Mater. Sci. 53(7), 4709–4733 (2018). https://doi.org/10.1007/s10853-017-1907-7

    CAS  Article  Google Scholar 

  4. 4.

    M.F. Serra, M.S. Conconi, G. Suarez, E.F. Aglietti, N.M. Rendtorff, Volcanic ash as flux in clay based triaxial ceramic materials, effect of the firing temperature in phases and mechanical properties. Ceram. Int. 41(5 Part A), 6169–6177 (2015). https://doi.org/10.1016/j.ceramint.2014.12.123

    CAS  Article  Google Scholar 

  5. 5.

    Y. Zheng, S. Wang, Z. Ouyang, Y. Zou, J. Liu, C. Li, X. Li, J. Feng, CAS-1 lunar soil simulant. Adv. Space Res. 43(3), 448–454 (2009). https://doi.org/10.1016/j.asr.2008.07.006

    CAS  Article  Google Scholar 

  6. 6.

    H. Takeda, S. Hashimoto, H. Kanie, S. Honda, Y. Iwamoto, Fabrication and characterization of hardened bodies from Japanese volcanic ash using geopolymerization. Ceram. Int. 40(3), 4071–4076 (2014). https://doi.org/10.1016/j.ceramint.2013.08.061

    CAS  Article  Google Scholar 

  7. 7.

    B.I. Djon Li Ndjock, A. Elimbi, M. Cyr, Rational utilization of volcanic ashes based on factors affecting their alkaline activation. J. Non-Cryst. Solids 463, 31–39 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.02.024

    CAS  Article  Google Scholar 

  8. 8.

    P.N. Lemougna, K-t Wang, Q. Tang, A.N. Nzeukou, N. Billong, U.C. Melo, X-m Cui, Review on the use of volcanic ashes for engineering applications. Resour. Conserv. Recycl. 137, 177–190 (2018). https://doi.org/10.1016/j.resconrec.2018.05.031

    Article  Google Scholar 

  9. 9.

    C. Leonelli, E. Kamseu, D.N. Boccaccini, U.C. Melo, A. Rizzuti, N. Billong, P. Miselli, Volcanic ash as alternative raw materials for traditional vitrified ceramic products. Adv. Appl. Ceram. 106(3), 135–141 (2007). https://doi.org/10.1179/174367607X159329

    CAS  Article  Google Scholar 

  10. 10.

    A. Husain, K. Kupwade-Patil, A.F. Al-Aibani, M.F. Abdulsalam, In situ electrochemical impedance characterization of cement paste with volcanic ash to examine early stage of hydration. Constr. Build. Mater. 133, 107–117 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.054

    CAS  Article  Google Scholar 

  11. 11.

    K. Kupwade-Patil, A.F. Al-Aibani, M.F. Abdulsalam, C. Mao, A. Bumajdad, S.D. Palkovic, O. Büyüköztürk, Microstructure of cement paste with natural pozzolanic volcanic ash and Portland cement at different stages of curing. Constr. Build. Mater. 113, 423–441 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.084

    CAS  Article  Google Scholar 

  12. 12.

    K. Kupwade-Patil, S. Chin, J. Ilavsky, R.N. Andrews, A. Bumajdad, O. Büyüköztürk, Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques. J. Mater. Sci. 53(3), 1743–1757 (2018). https://doi.org/10.1007/s10853-017-1659-4

    CAS  Article  Google Scholar 

  13. 13.

    E. Alemayehu, B. Lennartz, Virgin volcanic rocks: kinetics and equilibrium studies for the adsorption of cadmium from water. J. Hazard. Mater. 169(1), 395–401 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.109

    CAS  Article  Google Scholar 

  14. 14.

    J. Schleppi, J. Gibbons, A. Groetsch, J. Buckman, A. Cowley, N. Bennett, Manufacture of glass and mirrors from lunar regolith simulant. J. Mater. Sci. 54(5), 3726–3747 (2019). https://doi.org/10.1007/s10853-018-3101-y

    CAS  Article  Google Scholar 

  15. 15.

    Y. Zhou, T. Wang, D. Zhi, B. Guo, Y. Zhou, J. Nie, A. Huang, Y. Yang, H. Huang, L. Luo, Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review. J. Mater. Sci. 54(19), 12171–12188 (2019). https://doi.org/10.1007/s10853-019-03606-5

    CAS  Article  Google Scholar 

  16. 16.

    G.K. Warati, M.M. Darwish, F.F. Feyessa, T. Ghebrab, Suitability of scoria as fine aggregate and its effect on the properties of concrete. Sustainability 11(17), 4647 (2019). https://doi.org/10.3390/su11174647

    CAS  Article  Google Scholar 

  17. 17.

    A.M. Al-Swaidani, S.D. Aliyan, Effect of adding scoria as cement replacement on durability-related properties. Int. J. Concr. Struct. Mater. 9(2), 241–254 (2015). https://doi.org/10.1007/s40069-015-0101-z

    CAS  Article  Google Scholar 

  18. 18.

    D. Bondar, C. Lynsdale, N. Milestone, N. Hassani, Sulfate resistance of alkali activated pozzolans. Int. J. Concr. Struct. Mater. 9(2), 145–158 (2015). https://doi.org/10.1007/s40069-014-0093-0

    CAS  Article  Google Scholar 

  19. 19.

    K. Ezziane, A. Bougara, A. Kadri, H. Khelafi, E. Kadri, Compressive strength of mortar containing natural pozzolan under various curing temperature. Cem. Concr. Compos. 29(8), 587–593 (2007). https://doi.org/10.1016/j.cemconcomp.2007.03.002

    CAS  Article  Google Scholar 

  20. 20.

    M. Mouli, H. Khelafi, Performance characteristics of lightweight aggregate concrete containing natural pozzolan. Build. Environ. 43(1), 31–36 (2008). https://doi.org/10.1016/j.buildenv.2006.11.038

    Article  Google Scholar 

  21. 21.

    E.F. Rajaonarison, A. Gacoin, R. Randrianja, V.G. Ranaivoniarivo, B.H.N. Razafindrabe, Effect of scoria on various specific aspects of lightweight concrete. Int. J. Concr. Struct. Mater. 11(3), 541–555 (2017). https://doi.org/10.1007/s40069-017-0204-9

    CAS  Article  Google Scholar 

  22. 22.

    Y. Ma, G. Wang, G. Ye, J. Hu, A comparative study on the pore structure of alkali-activated fly ash evaluated by mercury intrusion porosimetry, N2 adsorption and image analysis. J. Mater. Sci. 53(8), 5958–5972 (2018). https://doi.org/10.1007/s10853-017-1965-x

    CAS  Article  Google Scholar 

  23. 23.

    X. Chen, H. Song, Y. Guo, L. Wang, F. Cheng, Converting waste coal fly ash into effective adsorbent for the removal of ammonia nitrogen in water. J. Mater. Sci. 53(18), 12731–12740 (2018). https://doi.org/10.1007/s10853-018-2394-1

    CAS  Article  Google Scholar 

  24. 24.

    H. Song, W. Xie, J. Liu, F. Cheng, K.A.M. Gasem, M. Fan, Effect of surfactants on the properties of a gas-sealing coating modified with fly ash and cement. J. Mater. Sci. 53(21), 15142–15156 (2018). https://doi.org/10.1007/s10853-018-2679-4

    CAS  Article  Google Scholar 

  25. 25.

    N. Salah, A.M. Alfawzan, A. Saeed, A. Alshahrie, W. Allafi, Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Sci. Rep. 9(1), 20288 (2019). https://doi.org/10.1038/s41598-019-56777-1

    CAS  Article  Google Scholar 

  26. 26.

    C. Gunasekara, Z. Zhou, D.W. Law, M. Sofi, S. Setunge, P. Mendis, Microstructure and strength development of quaternary blend high-volume fly ash concrete. J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-04473-1

    Article  Google Scholar 

  27. 27.

    X. Zhang, W. Huo, Y. Lu, K. Gan, S. Yan, J. Liu, J. Yang, Porous Si3N4-based ceramics with uniform pore structure originated from single-shell hollow microspheres. J. Mater. Sci. 54(6), 4484–4494 (2019). https://doi.org/10.1007/s10853-018-3118-2

    CAS  Article  Google Scholar 

  28. 28.

    M.R. Moufti, A.A. Sabtan, O.R. El-Mahdy, W.M. Shehata, Assessment of the industrial utilization of scoria materials in central Harrat Rahat Saudi Arabia. Eng. Geol. 57(3), 155–162 (2000). https://doi.org/10.1016/S0013-7952(00)00024-7

    Article  Google Scholar 

  29. 29.

    A.A. Sabtan, W.M. Shehata, Evaluation of engineering properties of scoria in central Harrat Rahat, Saudi Arabia. Bull. Eng. Geol. Environ. 59(3), 219–225 (2000). https://doi.org/10.1007/s100640000061

    Article  Google Scholar 

  30. 30.

    M.R. Moufti, K. Németh, Harrat Rahat: the geoheritage value of the youngest long-lived volcanic field in the Kingdom of Saudi Arabia, in Geoheritage of Volcanic Harrats in Saudi Arabia, ed. by M.R. Moufti, K. Németh (Springer, New York, 2016), pp. 33–120

    Google Scholar 

  31. 31.

    N. Salah, N. Baghdadi, A. Alshahrie, A. Saeed, A.R. Ansari, A. Memic, K. Koumoto, Nanocomposites of CuO/SWCNT: promising thermoelectric materials for mid-temperature thermoelectric generators. J Eur. Ceram. Soc. 39(11), 3307–3314 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.04.036

    CAS  Article  Google Scholar 

  32. 32.

    M.A. Gabal, W.A. Bayoumy, A. Saeed, Y.M. Al Angari, Structural and electromagnetic characterization of Cr-substituted Ni–Zn ferrites synthesized via egg-white route. J. Mol. Struct. 1097, 45–51 (2015). https://doi.org/10.1016/j.molstruc.2015.04.032

    CAS  Article  Google Scholar 

  33. 33.

    S.R. Alharbi, M. Alhassan, O. Jalled, S. Wageh, A. Saeed, Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single-phase nanocrystallites synthesized via sucrose-assisted sol–gel combustion method. J. Mater. Sci. 53(16), 11584–11594 (2018). https://doi.org/10.1007/s10853-018-2458-2

    CAS  Article  Google Scholar 

  34. 34.

    M. Akia, N. Salinas, S. Luna, E. Medina, A. Valdez, J. Lopez, J. Ayala, M. Alcoutlabi, K. Lozano, In situ synthesis of Fe3O4-reinforced carbon fiber composites as anodes in lithium-ion batteries. J. Mater. Sci. 54(21), 13479–13490 (2019). https://doi.org/10.1007/s10853-019-03717-z

    CAS  Article  Google Scholar 

  35. 35.

    S. Poyraz, J. Cook, Z. Liu, L. Zhang, A. Nautiyal, B. Hohmann, S. Klamt, X. Zhang, Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires. J. Mater. Sci. 53(17), 12178–12189 (2018). https://doi.org/10.1007/s10853-018-2511-1

    CAS  Article  Google Scholar 

  36. 36.

    L.G. da Trindade, G.Y. Hata, J.C. Souza, M.R.S. Soares, E.R. Leite, E.C. Pereira, E. Longo, T.M. Mazzo, Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications. J. Mater. Sci. 55(7), 2923–2936 (2020). https://doi.org/10.1007/s10853-019-04135-x

    CAS  Article  Google Scholar 

  37. 37.

    X. Yan, Y. Wu, D. Li, J. Hu, G. Li, P. Li, H. Jiang, W. Zhang, Synthesis and evolution of α-Fe2O3 nanorods for enhanced visible-light-driven photocatalysis. J. Mater. Sci. 53(23), 15850–15858 (2018). https://doi.org/10.1007/s10853-018-2751-0

    CAS  Article  Google Scholar 

  38. 38.

    P. Zhang, J. Huang, Z. Shen, X. Wang, F. Luo, P. Zhang, J. Wang, S. Miao, Fired hollow clay bricks manufactured from black cotton soils and natural pozzolans in Kenya. Constr. Build. Mater. 141, 435–441 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.018

    CAS  Article  Google Scholar 

  39. 39.

    B.M. Warnes, F.F. Aplan, G. Simkovich, Electrical conductivity and seebeck voltage of Fe2O3, pure and doped, as a function of temperature and oxygen pressure. Solid State Ion. 12, 271–276 (1984)

    CAS  Article  Google Scholar 

  40. 40.

    D.S. Parasnis, Principles of Applied Geophysics (Springer, New York, 2012)

    Google Scholar 

  41. 41.

    M. Erdemoğlu, M. Birinci, T. Uysal, E. Porgalı Tüzer, T.S. Barry, Mechanical activation of pyrophyllite ore for aluminum extraction by acidic leaching. J. Mater. Sci. 53(19), 13801–13812 (2018). https://doi.org/10.1007/s10853-018-2606-8

    CAS  Article  Google Scholar 

  42. 42.

    W. Zhu, S. Nakashima, E. Marin, H. Gu, G. Pezzotti, Microscopic mapping of dopant content and its link to the structural and thermal stability of yttria-stabilized zirconia polycrystals. J. Mater. Sci. 55(2), 524–534 (2020). https://doi.org/10.1007/s10853-019-04080-9

    CAS  Article  Google Scholar 

  43. 43.

    V.K. Soni, T. Roy, S. Dhara, G. Choudhary, P.R. Sharma, R.K. Sharma, On the investigation of acid and surfactant modification of natural clay for photocatalytic water remediation. J. Mater. Sci. 53(14), 10095–10110 (2018). https://doi.org/10.1007/s10853-018-2308-2

    CAS  Article  Google Scholar 

  44. 44.

    A. Bloise, Thermal behaviour of actinolite asbestos. J. Mater. Sci. 54(18), 11784–11795 (2019). https://doi.org/10.1007/s10853-019-03738-8

    CAS  Article  Google Scholar 

  45. 45.

    S.A. McEnroe, P. Robinson, F. Langenhorst, C. Frandsen, M.P. Terry, T.B. Ballaran, Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry, phase relations, and magnetic properties of hemo-ilmenite ores with micron- to nanometer-scale lamellae from Allard Lake, Quebec. J. Geophys. Res. (2007). https://doi.org/10.1029/2007JB004973

    Article  Google Scholar 

  46. 46.

    B. Burton, Thermodynamic analysis of the system Fe2O3-FeTiO3. Phys. Chem. Miner. 11(3), 132–139 (1984). https://doi.org/10.1007/BF00309251

    CAS  Article  Google Scholar 

  47. 47.

    G. Li, G. Zheng, Z. Ding, L. Shi, J. Li, Z. Chen, L. Wang, A.A.O. Tay, W. Zhu, High-performance ultra-low-k fluorine-doped nanoporous organosilica films for inter-layer dielectric. J. Mater. Sci. 54(3), 2379–2391 (2019). https://doi.org/10.1007/s10853-018-3013-x

    CAS  Article  Google Scholar 

  48. 48.

    Y. Peng, N. Pan, D. Wang, J. Yang, Z. Guo, W. Yuan, A Si–O–Si bridge assembled from 3-mercaptopropyltrimethoxysilane and silicon carbide for effective charge transfer in photocatalysis. J. Mater. Sci. 53(17), 12432–12440 (2018). https://doi.org/10.1007/s10853-018-2518-7

    CAS  Article  Google Scholar 

  49. 49.

    B.B. Kenne Diffo, A. Elimbi, M. Cyr, J. Dika Manga, H. Tchakoute Kouamo, Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 3(1), 130–138 (2015). https://doi.org/10.1016/j.jascer.2014.12.003

    Article  Google Scholar 

  50. 50.

    P. Krolop, A. Jantschke, S. Gilbricht, K. Niiranen, T. Seifert, Mineralogical imaging for characterization of the per Geijer Apatite iron ores in the Kiruna District, Northern Sweden: a comparative study of mineral liberation analysis and Raman imaging. Minerals 9(9), 544 (2019). https://doi.org/10.3390/min9090544

    CAS  Article  Google Scholar 

  51. 51.

    M.L. Frezzotti, F. Tecce, A. Casagli, Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 112, 1–20 (2012). https://doi.org/10.1016/j.gexplo.2011.09.009

    CAS  Article  Google Scholar 

  52. 52.

    F. Rull, J. Martinez-Frias, J.A. Rodríguez-Losada, Micro-Raman spectroscopic study of El Gasco pumice, western Spain. J Raman Spectrosc. 38(2), 239–244 (2007). https://doi.org/10.1002/jrs.1628

    CAS  Article  Google Scholar 

  53. 53.

    J. Hövelmann, A. Putnis, T. Geisler, B.C. Schmidt, U. Golla-Schindler, The replacement of plagioclase feldspars by albite: observations from hydrothermal experiments. Contrib. Miner. Petrol. 159(1), 43–59 (2010). https://doi.org/10.1007/s00410-009-0415-4

    CAS  Article  Google Scholar 

  54. 54.

    S.S. Palinkaš, R. Wegner, A. Čobić, L.A. Palinkaš, B.S. De Brito, T. Váczi, V. Bermanec, The role of magmatic and hydrothermal processes in the evolution of Be-bearing pegmatites: evidence from beryl and its breakdown products. Am. Miner. 99(2–3), 424–432 (2014). https://doi.org/10.2138/am.2014.4500

    Article  Google Scholar 

  55. 55.

    A. Kumar, S. Sarmah, AC conductivity and dielectric spectroscopic studies of polypyrrole–titanium dioxide hybrid nanocomposites. Phys Status Solidi (A) 208(9), 2203–2210 (2011). https://doi.org/10.1002/pssa.201026721

    CAS  Article  Google Scholar 

  56. 56.

    C.T. de Almeida e Silva, V. Fernandes Kettermann, C. Pereira, M. Simões, M. Wilhelm, K. Rezwan, Novel tape-cast SiOC-based porous ceramic electrode materials for potential application in bioelectrochemical systems. J. Mater. Sci. 54(8), 6471–6487 (2019). https://doi.org/10.1007/s10853-018-03309-3

    CAS  Article  Google Scholar 

  57. 57.

    M.A. Gabal, F. Al-Solami, Y.M. Al Angari, A. Awad, A.A. Al-Juaid, A. Saeed, Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route. J. Mater. Sci. 31(4), 3146–3158 (2020). https://doi.org/10.1007/s10854-020-02861-6

    CAS  Article  Google Scholar 

  58. 58.

    C.O. Park, S.A. Akbar, Ceramics for chemical sensing. J. Mater. Sci. 38(23), 4611–4637 (2003). https://doi.org/10.1023/A:1027402430153

    CAS  Article  Google Scholar 

  59. 59.

    W. Pan, M. Cao, C. Diao, C. Tao, H. Hao, Z. Yao, Z. Yu, H. Liu, Structures and dielectric properties of (Nb, Zn) co-doped SrTiO3 ceramics at various sintering temperatures. J. Mater. Sci. 54(19), 12401–12410 (2019). https://doi.org/10.1007/s10853-019-03793-1

    CAS  Article  Google Scholar 

  60. 60.

    A.A. Pritam, A.L. Sharma, Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J. Mater. Sci. 54(9), 7131–7155 (2019). https://doi.org/10.1007/s10853-019-03381-3

    CAS  Article  Google Scholar 

  61. 61.

    J. Exner, J. Kita, R. Moos, In- and through-plane conductivity of 8YSZ films produced at room temperature by aerosol deposition. J. Mater. Sci. 54(21), 13619–13634 (2019). https://doi.org/10.1007/s10853-019-03844-7

    CAS  Article  Google Scholar 

  62. 62.

    M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, Y.M. Al Angari, A. Saeed, Structural, thermal, magnetic and electrical properties of polyaniline/CoFe2O4 nano-composites with special reference to the dye removal capability. J. Inorg. Organomet. Polym. Mater. 29(6), 2197–2213 (2019). https://doi.org/10.1007/s10904-019-01179-z

    CAS  Article  Google Scholar 

  63. 63.

    M.A. Gabal, N.H. Al-Zahrani, Y.M.A. Angari, A. Saaed, Substitution effect on the structural, magnetic, and electrical properties of Co1−xZnxFe2O4 nanocrystalline ferrites ( $x = 0$ –1) prepared via gelatin auto-combustion method. IEEE Trans. Magn. 54(1), 1–12 (2018). https://doi.org/10.1109/TMAG.2017.2752726

    Article  Google Scholar 

  64. 64.

    J. Shanker, M.B. Suresh, G.N. Rao, D.S. Babu, Colossal dielectric, relaxor ferroelectric, diamagnetic and weak ferromagnetic properties of NdCrO3 perovskite nanoparticles. J. Mater. Sci. 54(7), 5595–5604 (2019). https://doi.org/10.1007/s10853-018-03226-5

    CAS  Article  Google Scholar 

  65. 65.

    R. Verma, S.P. Tiwari, R. Kumari, R. Srivastava, Study of enhancement in the dielectric and electrical properties of WO3-doped LiF nano-composite. J. Mater. Sci. 53(6), 4199–4208 (2018). https://doi.org/10.1007/s10853-017-1870-3

    CAS  Article  Google Scholar 

  66. 66.

    J. Sun, R. Ahmed, G.J. Wang, S.T. Wang, J. Wang, S.A. Suhaib, Y.M. Xie, H. Bi, C.C. Wang, Colossal dielectric behavior and dielectric anomalies in Sr2TiCrO6 ceramics. J. Mater. Sci. 54(8), 6323–6331 (2019). https://doi.org/10.1007/s10853-018-03298-3

    CAS  Article  Google Scholar 

  67. 67.

    M.K. Vyas, A. Chandra, Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of X-band. J. Mater. Sci. 54(2), 1304–1325 (2019). https://doi.org/10.1007/s10853-018-2894-z

    CAS  Article  Google Scholar 

  68. 68.

    F. Oliveira, N. Dencheva, P. Martins, S. Lanceros-Méndez, Z. Denchev, A new approach for preparation of metal-containing polyamide/carbon textile laminate composites with tunable electrical conductivity. J. Mater. Sci. 53(16), 11444–11459 (2018). https://doi.org/10.1007/s10853-018-2435-9

    CAS  Article  Google Scholar 

  69. 69.

    S.M. Salem, E.M. Antar, A.G. Mostafa, S.M. Salem, S.A. El-badry, Compositional dependence of the structural and dielectric properties of Li2O–GeO2–ZnO–Bi2O3–Fe2O3 glasses. J. Mater. Sci. 46(5), 1295–1304 (2011). https://doi.org/10.1007/s10853-010-4915-4

    CAS  Article  Google Scholar 

  70. 70.

    J.-F. Lin, W. Sturhahn, J. Zhao, G. Shen, H-k Mao, R.J. Hemley, Chapter 19 - Nuclear resonant inelastic X-ray scattering and synchrotron Mössbauer spectroscopy with laser-heated diamond anvil cells, in Advances in High-Pressure Technology for Geophysical Applications, ed. by J. Chen, Y. Wang, T.S. Duffy, G. Shen, L.F. Dobrzhinetskaya (Elsevier, Amsterdam, 2005), pp. 397–411

    Google Scholar 

  71. 71.

    E. Brok, C. Frandsen, K. Lefmann, S. McEnroe, P. Robinson, B.P. Burton, T.C. Hansen, R. Harrison, Spin orientation in solid solution hematite-ilmenite. Am. Miner. 102(6), 1234–1243 (2017). https://doi.org/10.2138/am-2017-5792CCBY

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical support they received from the Saudi Geological Survey, Center of Excellence in Nanotechnology at King Fahd University of Petroleum & Minerals, and Center of Nanotechnology at King Abdul Aziz University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hasan Assaedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alraddadi, S., Saeed, A. & Assaedi, H. Effect of thermal treatment on the structural, electrical, and dielectric properties of volcanic scoria. J Mater Sci: Mater Electron 31, 11688–11699 (2020). https://doi.org/10.1007/s10854-020-03720-0

Download citation