Electrical and photoresponse properties of CoSO4-PVP interlayer based MPS diodes

Abstract

The cobalt sulfate-polyvinylpyrrolidone (CoSO4-PVP) solution was deposited on n-Si crystal by using spin-coated method. The electrical and photoresponse properties of Au/(CoSO4-PVP)/n-Si MPS diode were investigated both in the dark and under illumination (100 mW/cm2) level. MPS-type diode exhibits good rectifying behavior in dark condition. The measured reverse current under illumination was found to be higher than dark condition. The MPS diode has also a good response to the illumination and photosensitivity value was found as 5.25 × 103 for 100 mW/cm2. The diode parameters such as n, Φb0 and Rs were extracted based on both the thermionic-emission (TE) and Norde method. The current conduction mechanisms of the MPS diode were also analyzed by forward ln(IF)-ln(VF) and reverse ln(IR)-VR1/2 plots. Moreover, both the voltage dependence of C and G characteristics were investigated under 1 MHz. The other electrical parameters such as V0, VD, ND, EF, WD and ΦB were extracted from the C−2–V characteristics. Besides, the voltage dependence profile of the Nss was extracted by using dark-illumination capacitance (Cdark-Cill) measurements at a frequency of 1 MHz. The results suggest that the prepared Au/(CoSO4-PVP)/n-Si MPS diode can be used in optoelectronic device applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A. Büyükbaş Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci. 29, 159–170 (2018)

    Google Scholar 

  2. 2.

    L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, K. Sulaiman, Synth. Metals 221, 169–175 (2016)

    CAS  Google Scholar 

  3. 3.

    M. Keskin, A. Akkaya, E. Ayyıldız, A.U. Öksüz, M.Ö. Karakuş, J. Mater. Sci. 30, 16676–16686 (2019)

    CAS  Google Scholar 

  4. 4.

    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  5. 5.

    L.H. Sperling, Introduction to Physical Polymer Science, 4th edn. (Wiley, Hoboken, New Jersey, 2006)

    Google Scholar 

  6. 6.

    R.J. Young, P.A. Lovell, Introduction to Polymers, 3rd edn. (CRC Press, Boca Raton, 2011)

    Google Scholar 

  7. 7.

    T. Blythe, D. Bloor, Electrical Properties of Polymers, 2nd edn. (Cambridge University Press, New York, 2005)

    Google Scholar 

  8. 8.

    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, 2003)

    Google Scholar 

  9. 9.

    A. Tataroglu, S. Altındal, Y. Azizian-Kalandaragh, Phys. B 576, 411733 (2020)

    CAS  Google Scholar 

  10. 10.

    R. Kaur, S.K. Tripathi, Organic Electron. 61, 235–241 (2018)

    CAS  Google Scholar 

  11. 11.

    A. Rawat, H.K. Mahavar, A. Tanwar, P.J. Singh, Bull. Mater. Sci. 37, 273–279 (2014)

    CAS  Google Scholar 

  12. 12.

    Gh Mohammed, A.M. El Sayed, W.M. Morsi, J. Phys. Chem. Solids 15, 238–247 (2018)

    Google Scholar 

  13. 13.

    J. Li, K. Inukai, Y. Takahashi, A. Tsuruta, W. Shin, Materials 11, 712 (2018)

    Google Scholar 

  14. 14.

    K. Sreekanth, T. Siddaiah, N.O. Gopal, Y.M. Kumar, Ch Ramu, J. Sci. 4, 230–236 (2019)

    Google Scholar 

  15. 15.

    X. Han, X. Chen, Q. Wang, S.M. Alelyani, J. Qu, Sol. Energy 177, 387–394 (2019)

    CAS  Google Scholar 

  16. 16.

    E.A. Gomaa, M.A. Tahoon, A. Shokr, Chem. Data Coll. 3–4, 58–67 (2016)

    Google Scholar 

  17. 17.

    C. Kargl-Simard, J.H. Huang, A.M. Alfantazi, Minerals Eng. 16, 529–535 (2003)

    CAS  Google Scholar 

  18. 18.

    Ş. Altındal, Ö. Sevgili, Y. Azizian-Kalandaragh, J. Mater. Sci. 30, 9273–9280 (2019)

    Google Scholar 

  19. 19.

    İ. Taşçıoğlu, Ö. Sevgili, Y. Azizian-Kalandaragh, Ş. Altındal, J. Electron. Mater. 49, 3720–3727 (2020)

    Google Scholar 

  20. 20.

    B.K. Pandey, A.K. Shahi, R.K. Swarnkar, R. Gopal, Sci. Adv. Mater. 4, 537–543 (2012)

    CAS  Google Scholar 

  21. 21.

    C. Kargl-Simard, J.H. Huang, A.M. Alfantazi, Miner. Eng. 16, 529–535 (2003)

    CAS  Google Scholar 

  22. 22.

    M. Pournaghdy, H. Aghaie, M. Monajjemi, M. Giahi, M.A. Bagherinia, J. Chem. Thermodyn. 42, 1494–1499 (2010)

    CAS  Google Scholar 

  23. 23.

    D. Wood, Optoelectronic Semiconductor Devices (Prentice Hall, New York, 1994)

    Google Scholar 

  24. 24.

    J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, New York, 2003)

    Google Scholar 

  25. 25.

    E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988)

    Google Scholar 

  26. 26.

    N.N. Halder, P. Biswas, S. Kundu, P. Banerji, Sol. Energy Mater. Sol. Cells 132, 230–236 (2015)

    CAS  Google Scholar 

  27. 27.

    S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, I. Orak, Ş. Altındal, J. Mater Sci. 27, 8340–8347 (2016)

    CAS  Google Scholar 

  28. 28.

    S.A. Yerişkin, H. Uslu, T. Tunç, Ş. Altındal, Int. Congr. Adv. Appl. Phys. Mater. Sci. AIP Conf. Proc. 144, 541–545 (2011)

    Google Scholar 

  29. 29.

    İ. Orak, A. Koçyiğit, A. Türüt, J. Alloys Compd. 691, 873–879 (2017)

    CAS  Google Scholar 

  30. 30.

    V. Rajagopal Reddy, C. Venkata Prasad, Mater. Sci. Eng. B 231, 74–80 (2018)

    CAS  Google Scholar 

  31. 31.

    C. Aksu Canbay, A. Tataroglu, A. Dere, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Alloys Compd. 688, 762–768 (2016)

    Google Scholar 

  32. 32.

    N. Kaymak, E. Efil, E. Seven, A. Tataroğlu, S. Bilge, E. Öz Orhan, Mater. Res. Express 6, 026309 (2019)

    Google Scholar 

  33. 33.

    D. Yan, J. Jiao, J. Ren, G. Yang, X. Gu, J. Appl. Phys. 114, 144511 (2013)

    Google Scholar 

  34. 34.

    A. Kumar, A. Kumar, K.K. Sharma, S. Chand, Superlattices Microst. 128, 373–381 (2019)

    CAS  Google Scholar 

  35. 35.

    M. Raj, C. Joseph, M. Subramanian, V. Perumalsamy, V. Elayappan, New J. Chem. 44, 7708–7718 (2020)

    CAS  Google Scholar 

  36. 36.

    I.S. Yahia, H.Y. Zahran, F.H. Alamri, M.A. Manthrammel, S. AlFaify, A.M. Ali, Phys. B 543, 46–53 (2018)

    CAS  Google Scholar 

  37. 37.

    J. Dar Hwang, Y.H. Chen, C.Y. Kung, J.C. Liu, IEEE Trans. Electron Dev. 54, 2386–2391 (2007)

    Google Scholar 

  38. 38.

    N.E. Koksal, M. Sbeta, A. Yildiz, IEEE Trans. Electron Dev. 66, 2238–2242 (2019)

    CAS  Google Scholar 

  39. 39.

    O. Çiçek, H. Uslu Tecimer, S.O. Tan, H. Tecimer, I. Orak, S. Altındal, Comp. Part B 113, 14–23 (2017)

    Google Scholar 

  40. 40.

    L. Pintilie, M. Alexe, A. Pignolet, D. Hesse, Appl. Phys. Lett. 73, 342–344 (1998)

    CAS  Google Scholar 

  41. 41.

    D.H. Shin, S.H. Choi, Micromachines 9, 350 (2018)

    Google Scholar 

  42. 42.

    I.S. Yahia, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, G. Karczewski, Curr. Appl. Phys. 13, 537–543 (2013)

    Google Scholar 

  43. 43.

    H. Norde, J. Appl. Phys. 50, 5052–5054 (1979)

    CAS  Google Scholar 

  44. 44.

    A. Buyukbas-Ulusan, S. Altındal-Yerişkin, A. Tataroğlu, J. Mater. Sci. 29, 16740–16746 (2018)

    CAS  Google Scholar 

  45. 45.

    G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy, J. Semicond. 38, 114001 (2017)

    Google Scholar 

  46. 46.

    Y. Badali, Y. Azizian-Kalandaragh, E.A. Akhlaghi, S. Altındal, J. Electron. Mater. 49, 444–453 (2019)

    Google Scholar 

  47. 47.

    H. Kim, H. Kim, D.-W. Kim, J. Korean Phys. Soc. 65, 751–756 (2014)

    CAS  Google Scholar 

  48. 48.

    T. Ben Jomaa, L. Beji, A. Ltaief, A. Bouazizi, Mater. Sci. Eng. C 26, 530–533 (2006)

    CAS  Google Scholar 

  49. 49.

    A. Buyukbaş-Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, M. Koşal, J. Mater. Sci. 30, 9572–9581 (2019)

    Google Scholar 

  50. 50.

    A.S. Riad, Phys. B 270, 148–156 (1999)

    CAS  Google Scholar 

  51. 51.

    A. Arshak, S. Zleetni, K. Arshak, Sensors 2, 174–184 (2002)

    CAS  Google Scholar 

  52. 52.

    L. Yong, W. Ling-Li, W. Xiao-Bo, Y. Ling-Ling, S. Li-Xia, T. Yong-Tao, L. Xin-Jian, Chin. Phys. B 23, 087307 (2014)

    Google Scholar 

  53. 53.

    K. Sreenu, C.V. Prasad, V. Rajagopal Reddy, J. Electron. Mater. 46, 5746–5754 (2017)

    CAS  Google Scholar 

  54. 54.

    E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  55. 55.

    H. Hatta, Y. Miyagawa, T. Nagase, T. Kobayashi, T. Hamada, S. Murakami, K. Matsukawa, H. Naito, Appl. Sci. 8, 1493 (2018)

    Google Scholar 

  56. 56.

    F.Z. Acar, A. Buyukbas-Ulusan, A. Tataroglu, J. Mater. Sci. Mater. Electron. 29, 12553–12560 (2018)

    CAS  Google Scholar 

  57. 57.

    İ. Taşçıoğlu, S.O. Tan, Ş. Altındal, J. Mater. Sci. 30, 11536–11541 (2019)

    Google Scholar 

  58. 58.

    H. Uslu, S. Altındal, U. Aydemir, I. Dökme, I.M. Afandiyeva, J. Alloys Compd. 503, 96–102 (2010)

    CAS  Google Scholar 

  59. 59.

    E.H. Nicollian, A. Goetzberger, Bell Syst. Tech. J. 46, 1055–1133 (1967)

    CAS  Google Scholar 

  60. 60.

    M. Diale, F.D. Auret, Phys. B 404, 4415–4418 (2009)

    CAS  Google Scholar 

  61. 61.

    A. Tataroglu, S. Altındal, Vacuum 82, 1203–1207 (2008)

    CAS  Google Scholar 

  62. 62.

    Y. Munikrishana Reddy, M.K. Nagaraj, M. Siva Pratap Reddy, J.-H. Lee, V. Rajagopal Redd, Braz. J. Phys. 43, 13–21 (2013)

    CAS  Google Scholar 

  63. 63.

    N.D. Reynolds, C.D. Panda, J.M. Essick, Am. J. Phys. 82, 196–205 (2014)

    CAS  Google Scholar 

  64. 64.

    R. Castange, A. Vapaille, Surf. Sci. 28, 157–193 (1971)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2019-26).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Tataroğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tataroğlu, A., Altındal, Ş. & Azizian-Kalandaragh, Y. Electrical and photoresponse properties of CoSO4-PVP interlayer based MPS diodes. J Mater Sci: Mater Electron 31, 11665–11672 (2020). https://doi.org/10.1007/s10854-020-03718-8

Download citation