Dielectric properties, complex impedance analysis and electrical properties of novel particulate composites of NBT-SrFe12O19


The proposed article describes the use of dielectric and complex impedance spectroscopy to evaluate various parameters such as electrical conductivity, activation energy, grain-grain boundary parameters, etc., of the (1−x)Na0.5Bi0.5TiO3–(x)SrFe12O19; (x = 0.5, 0.8 and 1) novel composite system formed with the help of solid-state reaction method. The composite samples have been achieved with modified and enhanced dielectric and electrical properties as compared to the pure ferroelectric and hexaferrite phase before making their composites. Both the regions of low dielectric constant and higher dielectric constant reveal the presence of Maxwell–Wagner polarization. The distribution relaxation time, Cole–Cole plot, and comparison of Modulus and impedance plot disclose the presence of space charge polarization and constant phase element justifying the semiconductor behavior of the samples. The overlapped normalized impedance curve on a single master curve confirmed the presence of relaxation phenomena in the samples and revealed that the samples follow a single relaxation phenomenon at all the temperatures. Jonscher’s power law has been used to find different models of conduction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    K.K. Patankar, S.A. Kanade, D.S. Padalkar, B.K. Chougule, Phys. Lett. A 361, 472 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    R. Pattanayak, S. Panigrahi, J. Magn. Magn. Mater. 481, 162 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    V. Singh, K.K. Singh, Bamzai. Mater. Chem. Phys. 155, 92 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    A. Singh, S. Suri, P. Kumar, B. Kaur, A.K. Thakur, V. Singh, J. Alloys Compd. 764, 599 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, J. Magn. Magn. Mater. 393, 253 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    V. Turchenko, V.G. Kostishyn, S. Trukhanov, F. Damay, F. Porcher, M. Balasoiu, N. Lupu, B. Bozzo, I. Fina, A. Trukhanov, J. Waliszewski, K. Recko, S. Polosan, J. Alloys Compd. 821, 153412 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    S. Dagar, A. Hooda, S. Khasa, M. Malik, J. Alloys Compd. 826, 154214 (2020)

    CAS  Article  Google Scholar 

  8. 8.

    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Ceram. Int. 44, 290 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, J. Magn. Magn. Mater. 477, 9 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, Y.I. Prylutskyy, U. Ritter, J. Mater. Sci. 52, 5345 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    M.M. Salem, L.V. Panina, E.L. Trukhanova, M.A. Darwish, A.T. Morchenko, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, Compos. B 174, 107054 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    R.S. Devan, C.M. Kanamadi, S.A. Lokare, B.K. Chougule, Smart Mater. Struct. 15, 1877 (2006)

    CAS  Article  Google Scholar 

  13. 13.

    R.S. Devan, B.K. Chougule, Phys. B 393, 161 (2007)

    CAS  Article  Google Scholar 

  14. 14.

    S. Dagar, A. Hooda, S. Khasa, M. Malik, J. Alloys Compd. 806, 737 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqati, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials. 9, 202 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    M.V. Zdorovets, A. Arbuz, A.L. Kozlovskiy, Ceram. Int. 46, 6217 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    Z.V Mocanu, G. Apachitei, L. Padurariu, F. Tudorache, L.P. Curecheriu, Z.V Mocanu, G. Apachitei, L. Padurariu, F. Tudorache, L.P. Curecheriu, HAL Id : hal-00736283 (2012)

  18. 18.

    Ashima, S. Sanghi, A. Agarwal, Reetu, N. Ahlawat, Monica, J. Appl. Phys. 112, 014110 (2012)

  19. 19.

    D.R. Patil, S.A. Lokare, S.S. Chougule, B.K. Chougule, Phys. B 400, 77 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Article  Google Scholar 

  21. 21.

    C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Article  Google Scholar 

  22. 22.

    J. William, D. Callister, D.G. Rethwisch, Mater. Sci. Eng. 536 (2013)

  23. 23.

    C.M. Kanamadi, S.R. Kulkarni, K.K. Patankar, S.S. Chougule, S.J. Patil, B.K. Chougule, J. Mater. Sci. 42, 5080 (2007)

    CAS  Article  Google Scholar 

  24. 24.

    S.S. Chougule, D.R. Patil, B.K. Chougule, J. Alloys Compd. 452, 205 (2008)

    CAS  Article  Google Scholar 

  25. 25.

    H.F. Zhang, S.W. Or, H.L.W. Chan, J. Alloys Compd. 509, 6311 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    M.V. Zdorovets, A.L. Kozlovskiy, Vacuum 168, 108838 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    M. Rawat, K.L. Yadav, Smart Mater. Struct. 24, 45041 (2015)

    Article  Google Scholar 

  28. 28.

    F.S. Moghadasi, V. Daadmehr, M. Kashfi, J. Magn. Magn. Mater. 416, 103 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D 44, 355402 (2011)

    Article  Google Scholar 

  30. 30.

    S. Thakur, R. Rai, I. Bdikin, M.A. Valente, H. Pradesh, C.U. De Santiago, 1. Introduction, 19, 1 (2016)

  31. 31.

    R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, N. Ahlawat, J. Alloys Compd. 676, 452 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    R.N. Bhowmik, M.C. Aswathi, Compos. B 160, 457 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    J. Ondru, Š. Csáki, V. Trnovcová, Š. Igor, Appl. Clay Sci. 154, 36 (2018)

    Article  Google Scholar 

  34. 34.

    R. Dahiya, A. Agarwal, S. Sanghi, Ashima, N. Ahlawat, J. Phys. D 45, 165001 (2012)

  35. 35.

    V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, J. Phys. 15, 1783 (2003)

    CAS  Google Scholar 

  36. 36.

    M.V. Zdorovets, A.L. Kozlovskiy, Study of the stability of the structural properties of CeO2 microparticles to helium irradiation. Surf. Coat. Technol. 383, 125286 (2020)

    Article  Google Scholar 

  37. 37.

    S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil'ev, A. Maignan, H. Szymczak, JETP Lett. 83, 33 (2006)

    CAS  Article  Google Scholar 

  38. 38.

    I. Kozlovskiy, M. Kenzhina, Zdorovets. Ceram. Int. 45, 8669 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    Z. Gao, Y. Pu, M. Yao, Q. Jin, Y. Wang, H. Zheng, Ceram. Int. 43, 85 (2017)

    Article  Google Scholar 

  40. 40.

    F. Garbayo, A. Baiutti, A.T. Morata, J. Eur. Ceram. Soc. 39, 101 (2019)

    CAS  Article  Google Scholar 

  41. 41.

    S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, J. Phys. Condens. Matter. 19, 266214 (2007)

    CAS  Article  Google Scholar 

Download references


Sunita Dagar would like to thank the Project Implementation Unit (NPIU), a unit of Ministry of Human Resource Development, Government of India, for the financial assistantship through TEQIP-III Project at Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana.

Author information



Corresponding author

Correspondence to Ashima Hooda.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dagar, S., Hooda, A. & Khasa, S. Dielectric properties, complex impedance analysis and electrical properties of novel particulate composites of NBT-SrFe12O19. J Mater Sci: Mater Electron 31, 11609–11617 (2020). https://doi.org/10.1007/s10854-020-03709-9

Download citation