Enhancement of efficiency and uniformity for green remote phosphor films and laminated white LEDs based on ZrO2 microparticles

Abstract

Green remote phosphor films (RPFs) with different ZrO2 microparticle concentrations for blue LEDs were prepared based on their strong scattering effect; the laminated white LED (WLED) with blue LED and red RPF was packaged further. XRD, SEM and double integrate sphere were used to test the RPFs. Results showed that ZrO2 microparticles were evenly dispersed in the silicon resin, the scattering effect significantly improves the utilization rate of excitation light and the transmission intensity of emission light, and the phosphor conversion efficiency (PCE) had a maximum value of 79.35% when ZrO2 concentration was 0.88 wt%. The laminated WLEDs test showed that the luminous efficiency (LE) reached a highest value of 150.38 lm/W at the same concentration, which has increased by 6.37%; ZrO2 microparticles can adjust the color rendering index (CRI) changed from 86.5 to 89.1, the correlated color temperature (CCT) gradually decreased from 4613 to 4219 K, and the CCT uniformity increased by 5.59%. Research shows that ZrO2 microparticles have potential application value in the preparation of high-quality WLEDs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability

Yes.

References

  1. 1.

    P. Pust, P.J. Schmidt, W. Schnick, Nat. Mater. 14, 454 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Peng, R.X. Li, H. Cheng, Z. Chen, H. Li, M.X. Chen, J. Alloys Compd. 693, 279 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    X.J. Xu, H. Li, Y. Zhuo, D.H. Xiong, M.X. Chen, J. Am. Ceram. Soc. 102, 1677 (2019)

    CAS  Google Scholar 

  4. 4.

    Y.H. Won, H.S. Jang, K.W. Cho, Y.S. Song, D.Y. Jeon, H.K. Kwon, Opt. Lett. 34, 1 (2019)

    Article  Google Scholar 

  5. 5.

    Y. Peng, S. Wang, R. Li, H. Li, H. Cheng, M. Chen, S. Liu, Appl. Opt. 55, 4933 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Y.H. Song, E.K. Ji, S.H. Bak, N.K. Ye, D.H. Yoon, Chem. Eng. J. 287, 511 (2015)

    Article  Google Scholar 

  7. 7.

    M.Z. Dong, J. Wei, H.Y. Ye, C.M. Yuan, G.Q. Zhang, J. Semicond. 34, 053007 (2013)

    Article  Google Scholar 

  8. 8.

    H. Xiao, Y.J. Lu, Y.X. Xu, L.H. Zhu, G.L. Chen, Y.L. Gao, X.G. Fan, R.C. Xue, Chin. J. Lumin. 35, 66 (2014)

    Article  Google Scholar 

  9. 9.

    N. Narendran, F. Gu, J.P. Freyssinier-Nova, Y. Zhu, Phys. Status Solid. A. 202, R60 (2005)

    CAS  Article  Google Scholar 

  10. 10.

    M.T. Lin, S.P. Ying, M.Y. Lin, K.Y. Tai, C.C. Sun, IEEE Photonics Technol. Lett. 22, 574 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    K.J. Chen, H.V. Han, H.C. Chen, C.C. Lin, S.H. Chen, C.C. Huang, T.M. Chen, M.H. Shih, H.C. Kuo, Nanoscale. 6, 5378 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    N.Z. Zhuo, N. Zhang, B.C. Li, W.Q. Li, Q.Y. He, F.H. Shi, Y.H. Zhu, H.D. Xing, H.B. Wang, Acta Phys. Sin. 65, 058501 (2016)

    Google Scholar 

  13. 13.

    Y.H. Chen, N.Z. Zhuo, P. Jiang, S.W. Cheng, P.F. Shen, H.B. Wang, Adv. Cond. Matter Phys. 1, 11 (2019)

    Google Scholar 

  14. 14.

    X. Shen, D. Zhang, X. Fan, G. Hu, X. Bian, L. Yang, J. Mater. Sci.: Mater. Electron. 26, 976 (2016)

    Google Scholar 

  15. 15.

    V.Y. Leung, A. Lagendijk, T.W. Tukker, A.P. Mosk, W.L. IJzerman, W.L. Vos, Opt. Exp. 22, 8190 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    K.C. Huang, Y.R. Huang, T.L. Chuang, S.Y. Ting, S.H. Tseng, J.E. Huang, Matter. Lett. 143, 244 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    A.Q.D. Nguyen, T.T. Nguyen, H. Lee, J. Chin. Inst. Eng. 40, 307 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Tang, Z. Li, Z.T. Li, J.S. Li, S.D. Yu, L.S. Rao, IEEE Trans. Electron Devices. 65, 158 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    J. Jia, D. Li, H. Jia, Opt. Mater. 72, 602 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    Y.L. Liu, J. Zou, M.M. Shi, Y. Li, B.B. Yang, Z.M. Wang, W.B. Li, F. Zheng, H.Y. Zhou, N. Jiang, J. Mater. Sci.: Mater. Electron. 29, 18476 (2018)

    CAS  Google Scholar 

  21. 21.

    L.G. Henyey, J.L. Greenstein, Astrophys. J. 93, 70 (1941)

    Article  Google Scholar 

  22. 22.

    N.Z. Zhuo, N. Zhang, T. Jiang, P. Chen, H.B. Wang, RSC Adv. 9, 27424 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    Z. Liu, S. Liu, K. Wang, X. Luo, Appl. Opt. 49, 247 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    N.T. Tran, F.G. Shi, J. Lightwave Technol. 26, 3556 (2008)

    CAS  Article  Google Scholar 

Download references

Funding

This research was funded by the National Key R&D Program of China (Grant Nos. 2016YFB0400600, 2016YFB0400605), The Natural Science Foundation of Jiangsu Province (Grant No. BK20171128), and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Contributions

Conceptualization: All Authors; methodology: TJ; formal analysis: LYX; investigation: NZZ; writing—original draft preparation: TJ and XFL; writing—review and editing: TJ and HBW.

Corresponding author

Correspondence to Hai-Bo Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Zhuo, N., Xie, L. et al. Enhancement of efficiency and uniformity for green remote phosphor films and laminated white LEDs based on ZrO2 microparticles. J Mater Sci: Mater Electron 31, 11581–11588 (2020). https://doi.org/10.1007/s10854-020-03706-y

Download citation