A novel Fe3O4/carbon nanotube composite film with a cratered surface structure for effective microwave absorption

Abstract

With the rapid development of microwave technologies, electromagnetic pollution and stealth have become important problems to be solved. Carbon materials as a kind of lightweight and efficient microwave absorbing materials have been widely studied. However, it is still a great challenge to achieve strong and broadband absorption, especially at a thin thickness. Herein, an Fe3O4/carbon nanotube (CNT) composite film with a cratered surface structure is reported. This film is prepared by continuously shrinking and winding a cylindrical CNT assembly, and the cratered structure formed by inducing a reaction between the introduced ferric acetylacetone and the Al substrate of the film. While the pristine CNT film and the Fe3O4/CNT composite film with a smooth and flat surface show good microwave absorption only at large thicknesses (4 mm and above), the composite film with a cratered surface structure starts to show effective absorption over wide C and X radar bands at a thickness as small as 0.4 mm. Investigation of electromagnetic parameters suggests that the absorption may be due to the synergistic effects of dielectric and magnetic losses and internal multiple scattering. This study provides a cratered surface strategy for developing microwave absorbing materials with thin thickness, lightweight, and strong wideband absorption for applications in both civil and military fields.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, J. Yuan, Chem. Eng. J. 359, 1265–1302 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    S.J. Genuis, Public Health 122, 113–124 (2008)

    Article  Google Scholar 

  3. 3.

    R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. 16, 401–405 (2004)

    CAS  Article  Google Scholar 

  4. 4.

    N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, ACS Appl. Mater. Interfaces 9, 2973–2983 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    H.X. Pan, X.W. Yin, J.M. Xue, L.F. Cheng, L.T. Zhang, Carbon 107, 36–45 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Adv. Mater. 27, 2049–2053 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Z.C. Mo, R.L. Yang, D.W. Lu, L.L. Yang, Q.M. Hu, H.B. Li, H. Zhu, Z.K. Tang, X.C. Gu, Carbon 144, 433–439 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, ACS Nano 6, 11009–11017 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    X. Jian, X.Y. Xiao, L.J. Deng, W. Tian, X. Wang, N. Mahmood, S.X. Dou, ACS Appl. Mater. Interfaces 10, 9369–9378 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    Q.M. Hua, R.L. Yang, Z.C. Mo, D.W. Lu, L.L. Yang, Z.F. He, H. Zhu, Z.K. Tang, X.C. Gui, Carbon 153, 737–744 (2019)

    Article  Google Scholar 

  11. 11.

    J.M. Zhang, P. Wang, Y.W. Chen, G.W. Wang, D. Wang, L. Qiao, T. Wang, F.S. Li, J. Electron. Mater. 47, 4703–4709 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    G.X. Tong, Y. Liu, T.T. Cui, Y.N. Li, Y.T. Zhao, J.G. Guan, Appl. Phys. Lett. 108, 072905 (2016)

    Article  Google Scholar 

  13. 13.

    H.L. Lv, X.H. Liang, G.B. Ji, H.Q. Zhang, Y.W. Du, ACS Appl. Mater. Interfaces 7, 9776–9783 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.B. Wang, X.H. He, Y.M. Shi, J. Mater. Sci. Mater. Electron. 28, 6619–6627 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    W. Zhou, L. Long, G.B. Bu, Y. Li, Adv. Eng. Mater. 21, 1800665 (2019)

    Article  Google Scholar 

  16. 16.

    H.J. Wei, X.W. Yin, Z.X. Hou, F.R. Jiang, H.L. Xu, M.H. Li, L.T. Zhang, L.F. Cheng, J. Eur. Ceram. Soc. 38, 4189–4197 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    P. Saini, V. Choudhary, S.K. Dhawan, Polym. Adv. Technol. 23, 343–349 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    H. John, R.M. Thomas, J. Jacob, K.T. Mathew, R. Joseph, Polym. Compos. 28, 588–592 (2007)

    CAS  Article  Google Scholar 

  19. 19.

    Y.P. Duan, W. Liu, L.L. Song, T.M. Wang, Mater. Res. Bull. 88, 41–48 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    K.R. Paton, A.H. Windle, Carbon 46, 1935–1941 (2008)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, Y.S. Chen, Carbon 105, 438–447 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, Y.W. Du, Carbon 142, 245–253 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    M. González, J. Baselga, J. Pozuelo, J. Mater. Chem. C 4, 8575–8582 (2016)

    Article  Google Scholar 

  24. 24.

    V.D. Phadtare, V.G. Parale, K.Y. Lee, T. Kim, V.R. Puri, H.H. Park, J. Alloy. Compd. 805, 120–129 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Li, X.F. Liu, X.Y. Nie, W.W. Yang, Y.D. Wang, R.H. Yu, J.L. Shui, Adv. Funct. Mater. 29, 1807624 (2019)

    Article  Google Scholar 

  26. 26.

    W.L. Song, Z.L. Zhou, L.C. Wang, X.D. Cheng, M.J. Chen, R.J. He, H.S. Chen, Y.Z. Yang, D.N. Fang, ACS Appl. Mater. Interfaces 9, 43179–43187 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    W. Xu, Y. Chen, H. Zhan, J.N. Wang, Nano Lett. 16, 946–952 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    X.Y. Zhao, X.L. Li, S.L. Zhang, J.J. Long, Y.C. Huang, R.H. Wang, J.W. Sha, J. Mater. Chem. A 5, 23592 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    J. Zheng, H.L. Lv, X.H. Lin, G.B. Ji, X.G. Li, Y.W. Du, J. Alloy. Compd. 589, 174–181 (2014)

    CAS  Article  Google Scholar 

  30. 30.

    X.S. Qi, Q. Hu, J.L. Xu, R. Xie, Z.C. Bai, Y. Jiang, S.J. Qin, W. Zhong, Y.W. Du, Mater. Sci. Eng. B 211, 53–60 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    W.H. Gu, B. Quan, X.H. Liang, W. Liu, G.B. Ji, Y.W. Du, ACS Sustain. Chem. Eng. 7, 5543–5552 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    X.F. Liu, X.Y. Nie, R.H. Yu, H.B. Feng, Chem. Eng. J. 334, 153–161 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    S. Kumar, R. Chatterjee, J. Magn. Magn. Mater. 448, 88–93 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    Z. Xiang, Y.M. Song, J. Xiong, Z.B. Pan, X. Wang, L. Liu, R. Liu, H.W. Yang, W. Lu, Carbon 142, 20–31 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    B. Zhao, G. Shao, B.B. Fan, B. Sun, K.K. Guan, R. Zhang, J. Mater. Sci. Mater. Electron. 25, 3614–3621 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    P. He, Z.L. Hou, K.L. Zhang, J. Li, K. Yin, S. Feng, S. Bi, J. Mater. Sci. 52, 8258–8267 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    X.F. Liu, Y.X. Chen, X.R. Cui, M. Zeng, R.H. Yu, G.S. Wang, J. Mater. Chem. A 3, 12197 (2015)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Liu, Y.W. Fu, L. Liu, W. Li, J.G. Guan, G.X. Tong, ACS Appl. Mater. Interfaces 10, 16511–16520 (2018)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key R&D Program of China (2018YFA0208404), National Natural Science Foundation of China (U1362104), and Innovation Program of Shanghai Municipal Education Commission.

Author information

Affiliations

Authors

Contributions

JNW conceived the idea. GW designed and performed the experiments. GW, YH, and JNW characterized, analyzed the data, and wrote the manuscript. All authors reviewed, discussed, and approved the results and conclusions of this article.

Corresponding author

Correspondence to Jian Nong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, G., He, Y., Zhan, H. et al. A novel Fe3O4/carbon nanotube composite film with a cratered surface structure for effective microwave absorption. J Mater Sci: Mater Electron 31, 11508–11519 (2020). https://doi.org/10.1007/s10854-020-03698-9

Download citation