Eu2+- and Nd3+-Doped CaAl2O4/WO3/polyester nanocomposite as a sunlight-activated photocatalyst for fast removal of dyes from industrial wastes


In this work, a reusable, sunlight-activated and environmentally friendly photocatalyst for fast removal of dye pollutants from industrial wastes was developed based on the synergistic effect among phosphorescent CaAl2O4:Eu2+:Nd3+ nanoparticles, WO3 photocatalyst and polyester resin. The emitted light by the phosphorescent CaAl2O4:Eu2+: Nd3+ nanoparticles is absorbed by the WO3 photocatalyst, and hence, the population of the excited WO3 particles is increased and their photocatalytic activity is significantly enhanced. The role of the polyester resin is to keep the CaAl2O4:Eu2+:Nd3+ nanoparticles and WO3 particles in the vicinity of each other and stabilize them on the surface of the glass plate via formation the transparent and robust polymer layer. Stabilization of the particles overcomes the recovering problems of the dispersed photocatalyst particles used in the traditional batch and continues systems. Thus, the proposed strategy has the potential to be applied for removal of dye pollutants from industrial wastes in the large scale. The chemical structure and dispersion quality of the synthesized nanocomposite photocatalyst were studied using FT-IR spectroscopy, XRD analysis, FE-SEM imaging and EDX analysis. The affecting variables on the photocatalytic activity of the proposed system were optimized. The rate constant of the photocatalysis degradation of methylene blue was calculated to be 0.113 min−1. Under sunlight, the synthesized nanocomposite photocatalyst is able to completely remove methylene blue from industrial wastes in less than 30 min.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    S. Sarkar, A. Banerjee, U. Halder, R. Biswas, R. Bandopadhyay, Water Conserv. Sci. Eng. 2, 121 (2017)

    Article  Google Scholar 

  2. 2.

    B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Biotechnol. Res. Innov. 3, 275 (2019)

    Article  Google Scholar 

  3. 3.

    K. Gupta, D. Gupta, O.P. Khatri, Appl. Surf. Sci. 476, 647 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Z. Liu, Q. Wang, X. Tan, Y. Wang, R. Jin, S. Gao, Sep. Purif. Technol. 215, 565 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    W. Li, B. Mu, Y. Yang, Bioresour. Technol. 277, 157 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Z. Lü, F. Hu, H. Li, X. Zhang, S. Yu, M. Liu, C. Gao, J. Hazard. Mater. 368, 436 (2019)

    Article  Google Scholar 

  7. 7.

    L. Huang, Q. Shuai, S. Hu, J. Clean. Prod. 215, 280 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    F. Farahbakhsh, M. Ahmadi, H.S. Hekmatara, M.S.E. Heydari-Bafrooei, Mater. Chem. Phys. 244, 279 (2019)

    Google Scholar 

  9. 9.

    C.M. Park, Y.M. Kim, K.H. Kim, D. Wang, C. Su, Y. Yoon, Chemosphere 221, 392 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    V.-D. Dao, N.T.P. Le Chi, D. Van Thuan, T.-D. Pham, D.-T. Tran, M.P. Nguyen, P. Thao, M.V. Nguyen, N.T. Dieu Cam, N.M. Tuong, N.M. Dang, H.-S. Choi, J. Alloys Compd. 775, 942 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    S. Gunti, T. Alamro, M. McCrory, M.K. Ram, J. Environ. Chem. Eng. 5, 5547 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    F. Han, V.S.R. Kambala, M.I. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 352, 325 (2009)

    Google Scholar 

  13. 13.

    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 114, 9919 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    L. Zeng, F. Zhe, Y. Wang, Q. Zhang, X. Zhao, X. Hu, Y. Wu, Y. He, J. Coll. Interface Sci. 539, 563 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B 125, 331 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Lin, Z. Tang, Z. Zhang, C. Nan, J. Europ, Ceram. Soc. 23, 175 (2003)

    CAS  Article  Google Scholar 

  17. 17.

    C. Zhao, D. Chen, Mater. Lett. 61, 3673 (2007)

    CAS  Article  Google Scholar 

  18. 18.

    M.A. Sawpan, K.L. Pickering, A. Fernyhough, Compos. A 42, 1189 (2011)

    Article  Google Scholar 

  19. 19.

    H.I.S. Nogueira, M.V. Cavaleiro, J. Rocha, T. Trindade, J.D.P. de Jesus, Mater. Res. Bull. 39, 683 (2004)

    CAS  Article  Google Scholar 

  20. 20.

    Y.Z. Halef Oglu, O. Serindag, J. Ceram. Proces. Res. 15, 262 (2014)

    Google Scholar 

  21. 21.

    J.S. Filhol, D. Zitoun, L. Bernaud, A. Manteghetti, J. Chem. Edu. 86, 72 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    R. López, R. Gómez, J. Sol–Gel Sci. Technol. 61, 1 (2012)

    Article  Google Scholar 

  23. 23.

    J.Y. Luo, Z. Cao, F. Chen, L. Li, Y.R. Lin, B.W. Liang, Q.G. Zeng, M. Zhang, X. He, C. Li, Appl. Surf. Sci. 287, 270 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    S.M. Ryu, C. Nam, Phys. Status Solidi A 215, 1700996 (2018)

    Article  Google Scholar 

  25. 25.

    S. Chakrabarti, B.K. Dutta, J. Hazard. Mater. B. 112, 269 (2004)

    CAS  Article  Google Scholar 

  26. 26.

    K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, J. Photochem. Photobiol. C 9, 171 (2008)

    CAS  Article  Google Scholar 

  27. 27.

    S. Qi, S. Yang, L. Yue, J. Wang, X. Liang, B. Xin, Mater. Res. Bull. 111, 126 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    N.P. de Moraes, L.A. Bacetto, L.K. Paiva, G.S. dos Santos, M.L.C.P. da Silva, L.A. Rodrigues, J. Sol-Gel Sci. Technol. 89, 571 (2019)

    Article  Google Scholar 

  29. 29.

    M.A. Ahmed, Z.M. Abou-Gamra, M.A. Alshakhanbeh, H. Madien, Environ. Nanotechnol. Monit Manag. (2019).

    Article  Google Scholar 

  30. 30.

    M. Feilizadeh, M. Vossoughi, S.M. Esmaeil Zakeri, M. Rahimi, Ind. Eng. Chem. Res. 53, 9578 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    X. Shu, J. He, D. Chen, Ind. Eng. Chem. Res. 47, 4750 (2008)

    CAS  Article  Google Scholar 

  32. 32.

    P. Goyal, S. Chakraborty, S.K. Misra, Environ. Nanotechnol. Monit Manag. 10, 28 (2018)

    Google Scholar 

  33. 33.

    R. Rakhshaee, J. Darvazeh, J. Hazard. Mater. 356, 61 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    S. Rajaboopathi, S. Thambidurai, J. Mol. Liq. 262, 148 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    S. Zarrin, F. Heshmatpour, J. Hazard. Mater. 351, 147 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    B. Vellaichamy, P. Periakaruppan, Ind. Eng. Chem. Res. 57(19), 6684 (2018)

    CAS  Article  Google Scholar 

  37. 37.

    X. Liu, C. Chen, H. Ye, Y. Jia, Y. Wu, A. Jin, Y. Wang, X. Chen, Carbon 131, 213 (2018)

    CAS  Article  Google Scholar 

Download references


The support of this work by a research (Grant No. 96007744) from the Iran National Science Foundation (INSF) is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Kiomars Zargoosh.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2612 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zargoosh, K., Rostami, M. & Aliabadi, H.M. Eu2+- and Nd3+-Doped CaAl2O4/WO3/polyester nanocomposite as a sunlight-activated photocatalyst for fast removal of dyes from industrial wastes. J Mater Sci: Mater Electron 31, 11482–11495 (2020).

Download citation