Enhanced heating ability of Fe–Mn–Gd ferrite nanoparticles for magnetic fluid hyperthermia


This paper reveals the structural, magnetic and heating ability of citric acid coated Fe0.3Mn0.7GdxFe2−xO4 (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.1) nanocrystalline ferrites. The synthesis of Gd-doped Fe–Mn ferrite nanoparticles (NPs) is confirmed by XRD studies. Substitution of Gd3+ions in Fe–Mn ferrite causes the lattice constant enhancement from 8.3286 to 8.4699 Å. The cation distribution reveals that Gd3+ ions preferred the octahedral sites of Fe–Mn ferrite. The average crystallite size is around 10–12 nm. The Fe–Mn–Gd spinel ferrite NPs are also characterized by FTIR studies and supports its formation. The saturation magnetization increases with Gd-content, take its maximum value for x = 0.06 and drops further for higher x values. The change in saturation magnetization show a connection with the structural modifications; because of replacement of Gd3+ ions at the place of Fe3+ ions in the octahedral site (B-site), it modifies A and B sublattices superexchange interactions. The heating abilities of these nanoparticles are studied by applying different alternating magnetic fields at constant frequency 289 kHz. When referred to the Gd-content, the SAR exhibits similar variation as saturation magnetization (Ms) and anisotropy constant (K), the later being more dominant. The highest value of SAR is 640 W/g for Fe0.3Mn0.7Gd0.06Fe1.94O4 sample under an applied field 251.4 Oe. It is seen that SAR is increased by nearly six times as compared to pristine Fe0.3Mn0.7Fe2O4 nanoparticles. The present results suggest that magnetic field controlled therapeutic temperature can be easily achieved within 1 min using such nanoparticles.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    P.T. Phong, N.X. Phuc, P.H. Nam, N.V. Chien, D.D. Dung, P.H. Linh, Phys. B 531, 30 (2018)

    CAS  Google Scholar 

  2. 2.

    X. Zhou, Y. Zhou, L. Zhou, J. Wei, J. Wu, D. Yao, Ceram. Int. 45, 6236 (2019)

    CAS  Google Scholar 

  3. 3.

    P. Thakur, R. Sharma, V. Sharma, P.B. Barman, M. Kumar, D. Barman, S.C. Katyal, P. Sharma, J. Magn. Magn. Mater. 432, 208 (2017)

    CAS  Google Scholar 

  4. 4.

    X. Zhou, Z. Jia, A. Feng, S. Qu, X. Wang, X. Liu, B. Wang, G. Wu, J. Colloids Interface Sci. 575, 130–139 (2020)

    CAS  Google Scholar 

  5. 5.

    D.S. Nikam, S.V. Jadhav, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Magn. Magn. Mater. 349, 208 (2014)

    CAS  Google Scholar 

  6. 6.

    A.P.R. Mary, T.N. Narayanan, V. Sunny, D. Sakthikumar, Y. Yoshida, P.A. Joy, M.R. Anantharaman, Nanoscale Res. Lett. 5, 1706 (2010)

    Google Scholar 

  7. 7.

    A.L. Andrade, L.C.D. Cavalcante, J.D. Fabris, M.C. Pereira, J.D. Ardisson, R.Z. Domingues, Hyperfine Interact. 1, 238 (2017)

    Google Scholar 

  8. 8.

    R. Das, J. Alonso, Z.N. Porshokouh, V. Kalappattil, D. Torres, M.H. Phan, E. Garaio, J.A. García, J.L.S. Llamazares, H. Srikanth, J. Phys. Chem. C 18(120), 10086 (2016)

    Google Scholar 

  9. 9.

    N.M. Deraz, S. Shaban, J. Anal. Appl. Pyrolysis 86, 173 (2009)

    CAS  Google Scholar 

  10. 10.

    J. Dhumal, S.S. Bandgar, M. Phadtare, G.S. Shahane, Int. J. Res. Anal. Rev. 6(1), 1058 (2019)

    Google Scholar 

  11. 11.

    M.M. Eltabey, A.M. Massoud, C. Radu, J. Nanomater. (2014). https://doi.org/10.1155/2014/492832

    Article  Google Scholar 

  12. 12.

    G. Dascalu, T. Popescu, M. Feder, O.F. Caltun, J. Magn. Magn. Mater. 69, 333 (2013)

    Google Scholar 

  13. 13.

    A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, J. Magn. Magn. Mater. 59, 329 (2013)

    Google Scholar 

  14. 14.

    A.M. Pachpinde, M.M. Langade, K.S. Lohar, S.M. Patange, S.E. Shirsath, Chem. Phys. 20, 429 (2014)

    Google Scholar 

  15. 15.

    Y.Y. Meng, Z.W. Liu, H.C. Dai, H.Y. Yu, D.C. Zeng, S. Shukla, R.V. Ramanujan, Powder Tech. 229, 270 (2012)

    CAS  Google Scholar 

  16. 16.

    P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, D. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, J. Magn. Magn. Mater. 92, 378 (2015)

    Google Scholar 

  17. 17.

    E. Ateia, M.A. Ahmed, A.K. El-Aziz, J. Magn. Magn. Mater. 311, 545 (2007)

    CAS  Google Scholar 

  18. 18.

    E. Petrova, D. Kotsikau, V. Pankov, A. Fahmi, J. Magn. Magn. Mater. 85, 473 (2019)

    Google Scholar 

  19. 19.

    N. Lwin, M.N. Fauzi, S. Shreekantan, R. Othman, Phys. B 461, 134 (2015)

    CAS  Google Scholar 

  20. 20.

    B. Parvatheeswara, K.H. Rao, J. Magn. Magn. Mater. 44, 292 (2005)

    Google Scholar 

  21. 21.

    P. Kumar, J. Chand, S. Verma, M. Singh, Int. J. Appl. Sci. 3(2), 10 (2011)

    Google Scholar 

  22. 22.

    C. Murugesan, B. Sathyamoorthy, G. Chandrasekaran, Phys. Scr. 90, 085809 (2015)

    Google Scholar 

  23. 23.

    E.C. Ortiz, O.P. Perez, P. Voyles, G. Gutierrez, M.S. Tomar, EDA publishing/ENS (2007) 68-71 ISBN:978-2-35500-003-4

  24. 24.

    J. Dhumal, S. Bandgar, K. Zipare, G. Shahane, Int. J. Mater. Chem. Phys. 1(2), 141 (2015)

    Google Scholar 

  25. 25.

    G.S. Shahane, K.V. Zipare, S.S. Bandgar, V.L. Mathe, J. Mater. Sci.: Mater. Electron. 28, 4146 (2016)

    Google Scholar 

  26. 26.

    K.V. Zipre, S.S. Bandgar, G.S. Shahane, J. Rare Earth 36, 86 (2018)

    Google Scholar 

  27. 27.

    M.B. Mohamed, M. Yehia, J. Alloys Compd. 615, 181 (2014)

    CAS  Google Scholar 

  28. 28.

    N. Najmoddin, A. Beitollahi, H. Kavas, M.M. Seyed, H. Rezaie, J. Akerman, Ceram. Int. 40, 3619 (2014)

    CAS  Google Scholar 

  29. 29.

    R. Kesavamoorthi, C. Ramachandra Raja, J. Supercond. Nov. Magn. (2016). https://doi.org/10.1007/s10948-016-3904-5

    Article  Google Scholar 

  30. 30.

    A. Kumar, P.S. Rana, M.S. Yadav, R.P. Pant, Ceram. Int. 41, 1297 (2015)

    CAS  Google Scholar 

  31. 31.

    S. Jovanovic, M. Spreitzer, M. Tramsek, Z. Trontelj, D. Suvorov, J. Phys. Chem. C 118(25), 13844 (2014)

    CAS  Google Scholar 

  32. 32.

    V.J. Angadi, B. Rudraswamy, K. Sadhana, K. Praveena, J. Magn. Magn. Mater. 409, 111 (2016)

    CAS  Google Scholar 

  33. 33.

    R.P. Pant, M. Arora, B. Kaur, V. Kumar, A. Kumar, J. Magn. Magn. Mater. 322, 3688 (2010)

    CAS  Google Scholar 

  34. 34.

    K.G. Kanade, D.P. Amalnerkar, H.S. Potdar, B.B. Kale, Mater. Chem. Phys. 117, 187 (2009)

    CAS  Google Scholar 

  35. 35.

    S. Nigam, K.C. Barick, D. Bahadur, J. Magn. Magn. Mater. 323, 237 (2011)

    CAS  Google Scholar 

  36. 36.

    A. Kumar, N. Yadav, D.S. Rana, P. Kumar, M. Arora, R.P. Pant, J. Magn. Magn. Mater. 394, 379 (2015)

    CAS  Google Scholar 

  37. 37.

    R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, V. Sharma, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.07.076

    Article  Google Scholar 

  38. 38.

    G. Gnanaprakash, J. Philip, B. Raj, Mater. Lett. 61, 4545 (2007)

    CAS  Google Scholar 

  39. 39.

    R. Desai, V. Davariya, K. Parekh, R.V. Upadhyay, Pramana-J. Phys. 73(4), 765 (2009)

    CAS  Google Scholar 

  40. 40.

    R. Hergt, R. Hiergeist, M. Zeisberger, G. Glockl, W. Weitschies, L.P. Ramirez, I. Hilger, W.A. Kaiser, J. Magn. Magn. Mater. 280, 358 (2004)

    CAS  Google Scholar 

  41. 41.

    N.S. Kommareddi, M. Tata, V.T. John, G.L. McPherson, M.F. Herman, Y.S. Lee, C.J. O’Connor, J.A. Akkara, D.L. Kaplan, Chem. Mater. 8, 801 (1996)

    CAS  Google Scholar 

  42. 42.

    L.D. Tung, V. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’Connor, J. Appl. Phys. 93, 7486 (2003)

    CAS  Google Scholar 

  43. 43.

    M. Grigorova, H.J. Blythe, V. Blaskov, V. Rusanov, V. Petkov, V. Masheva, D. Nihtianova, L.M. Martinez, J.S. Muñoz, M. Mikhov, J. Magn. Magn. Mater. 183, 163 (1998)

    CAS  Google Scholar 

  44. 44.

    K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, J. Chem. Mater. 10, 3445 (1998)

    CAS  Google Scholar 

  45. 45.

    A.B. Navale, N.S. Kanhe, K.R. Patil, S.V. Bhoraskar, V.L. Mathe, A.K. Das, J. Alloys Compd. 509, 4404 (2011)

    Google Scholar 

  46. 46.

    V.J. Angadi, L. Choudhary, K. Sadhana, H.-L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, K. Praveena, J. Magn. Magn. Mater. 424, 1 (2017)

    CAS  Google Scholar 

  47. 47.

    R. Islam, M.A. Hakim, M.O. Rahman, H.N. Das, M.A. Mamun, J. Alloys Compd. 559, 174 (2013)

    CAS  Google Scholar 

  48. 48.

    E.C. Devi, I. Soibam, J. Magn. Magn. Mater. 469, 587 (2019)

    CAS  Google Scholar 

  49. 49.

    R.V. Upadhyay, R.V. Mehta, K. Parekh, D. Srinivas, R.P. Pant, J. Magn. Magn. Mater. 201, 129 (1999)

    CAS  Google Scholar 

  50. 50.

    P. Thakur, R. Sharma, M. Kumar, S.C. Katyal, N.S. Negi, N. Thakur, V. Sharma, P. Sharma, Mater. Res. Exp. 3, 075001 (2016)

    Google Scholar 

  51. 51.

    P. Hu, H.-B. Yang, D.-A. Pan, H. Wang, J.-J. Tian, S.-G. Zhang, X.-F. Wang, A.A. Volinsky, J. Magn. Magn. Mater. 322, 173 (2010)

    CAS  Google Scholar 

  52. 52.

    R.H. Kadam, K. Desai, V.S. Shinde, M. Hashim, S.E. Shirsath, J. Alloys Compd. 657, 487 (2016)

    CAS  Google Scholar 

  53. 53.

    Q. Lin, J. Lin, Y. He, R. Wang, J. Dong, J. Nanomater. (2015). https://doi.org/10.1155/2015/294239

    Article  Google Scholar 

  54. 54.

    S.V. Jadhav, D.S. Nikam, V.M. Khot, N.D. Thorat, M.R. Phadatare, R.S. Ningthoujam, A.B. Salunkhe, S.H. Pawar, New J. Chem. (2013). https://doi.org/10.1039/c3nj00554b

    Article  Google Scholar 

  55. 55.

    M.R. Phadatare, J.V. Meshram, K.V. Gurav, J.H. Kim, S.H. Pawar, J. Phys. D 49, 1 (2016)

    Google Scholar 

  56. 56.

    J. Giri, P. Pradhan, T. Sriharsha, D. Bahadura, J. Appl. Phys. 97, 10Q916 (2005)

    Google Scholar 

  57. 57.

    E.C. Abenojara, S. Wickramasinghe, J. Bas-Concepcion, A.C.S. Samia, Prog. Nat. Sci. 26, 440 (2016)

    Google Scholar 

  58. 58.

    F. Hirosawa, T. Iwasaki, S. Watan, Appl. Nanosci. 7, 209 (2017)

    CAS  Google Scholar 

  59. 59.

    I.M. Obaidat, C. Nayek, K. Manna, Appl. Sci. 7, 1269 (2017)

    Google Scholar 

  60. 60.

    E. Calderón-Ortiz, O. Perales-Perez, P. Voyles, G. Gutierrez, M. Tomar, Microelectron. J. 40(4), 677 (2009)

    Google Scholar 

Download references


The author (JGD) is very much thankful to UGC-DAE Consortium for Scientific Research, Indore, India for providing VSM and other facilities at the centre. Thanks are extended to Dr. Alok Banerjee, Centre Director, UGC-DAE Consortium for Scientific Research, Indore, India for the timely help and useful discussions.

Author information



Corresponding author

Correspondence to G. S. Shahane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhumal, J., Phadatare, M., Deshmukh, S.G. et al. Enhanced heating ability of Fe–Mn–Gd ferrite nanoparticles for magnetic fluid hyperthermia. J Mater Sci: Mater Electron 31, 11457–11469 (2020). https://doi.org/10.1007/s10854-020-03694-z

Download citation