Effect of annealing conditions on the superconducting properties of nano-sized metallic Au-added Bi1.8Sr2Au0.2Ca1.1Cu2.1Oy (Bi-2212) ceramics


In this study, the effects of annealing process on the phase formation and electrical and magnetic properties of nano-sized metallic Au-added Bi-2212 ceramics have been investigated. The Bi1.8Sr2Au0.2Ca1.1Cu2.1Oy including x = 0.2 Au content as starting composition was chosen due to the improved transport properties in the Bi-2212 system, as known in the literature. The samples for the post-annealing technique were exposed at different dwell times (10 m, 30 m, 1 h, and 2.5 h) at a fixed temperature of 870 °C after the application of normal heat treatment of 850 °C for 120 h. The XRD diagrams clearly indicate that a significant part of the phases in all the samples belongs to Bi-2212 phase. SEM results show that all the samples have randomly oriented grain forms as the main characteristic of applied solid-state method. In all cases, the post-annealed samples showed better superconducting properties of Bi-2212 phase, indicating that the increases in the dwell time positively affect its granular polycrystalline character such as inter-connectivity of the grains, the nucleation, and growth of the Bi-2212 phase. Moreover, the sample with dwell time of 2.5 h at 870 °C reveals significant enhancement in the M–H loops compared to the sample with less dwell time, despite the fact that the Bi-2212 phase can easily decompose into secondary phases such as Cu-free and Bi-free due to thermodynamic instabilities of Bi-2212 at temperatures above 860 °C. Finally, the intragranular critical current density values (Jc) have been obtained by using the data from M-H measurements according to the critical Bean model. It has been found that the Jc value (16.5 × 104 A/cm2 in 0.15 T at 15 K) of the sample in the dwell time of 2.5 h at 870 °C is higher than that of the sample (13.4 × 104 A/cm2 in 0.15 T at 10 K) with the same starting composition reported in the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L209–L210 (1988)

    CAS  Google Scholar 

  2. 2.

    M. Takano, J. Takada, K. Oda, H. Kitaguchi, Y. Miura, Y. Ikeda, Y. Tomii, H. Mazaki, Japan. J. Appl. Phys. Lett. 45, 27–L1041 (1988)

    Google Scholar 

  3. 3.

    C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau, Z. Phys. B 68, 421–423 (1987)

    CAS  Google Scholar 

  4. 4.

    H.G. von Schnering, L. Walz, M. Schwarz, W. Becker, M. Hartweg, T. Popp, B. Hettich, P. Muller, G. Kampf, Angew. Chem. Int. Ed. Engl. 27, 574–576 (1988)

    Google Scholar 

  5. 5.

    G. Blatter, M.V. Feigelman, V.B. Ceshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)

    CAS  Google Scholar 

  6. 6.

    G. Yıldırım, J. Alloys Compd. 699, 247–255 (2017)

    Google Scholar 

  7. 7.

    R. Heller, J.R. Hull, I.E.E.E. Trans, Appl. Supercond. 5, 797–800 (1995)

    Google Scholar 

  8. 8.

    D. Sharma, R. Kumar, V.P.S. Awana, Ceram. Int. 39, 1143–1152 (2013)

    CAS  Google Scholar 

  9. 9.

    D.S. Ginley, D.A. Cardwell (eds.), Handbook of Superconducting Materials: Characterization, Applications and Cryogenics (Institute of Physics, Philadelphia, 2003)

    Google Scholar 

  10. 10.

    A.B. Kulakov, I.K. Bdikin, S.A. Zver’kov, G.A. Emel’chenko, G. Yang, J.S. Abell, Physica C 371, 45–51 (2002)

    CAS  Google Scholar 

  11. 11.

    O. Bilgili, Y. Selamet, K. Kocabaş, J. Supercond. Novel Magn. 21, 439–449 (2008)

    CAS  Google Scholar 

  12. 12.

    H. Sözeri, N. Ghazanfari, H. Özkan, A. Kılıç, Supercond. Sci. Technol. 20, 522–528 (2007)

    Google Scholar 

  13. 13.

    A. Sotelo, M. Mora, M.A. Madre, J.C. Diez, L.A. Angurel, G.F. de la Fuente, J. Eur. Ceram. Soc. 25, 2947–2950 (2005)

    CAS  Google Scholar 

  14. 14.

    L. Jiang, Y. Sun, X. Wan, K. Wang, G. Xu, X. Chen, K. Ruan, J. Du, Physica C 300, 61–66 (1998)

    CAS  Google Scholar 

  15. 15.

    S. Zhang, C. Li, Q. Hao, X. Ma, T. Lu, P. Zhang, Supercond. Sci. Technol. 28, 045014 (2015)

    Google Scholar 

  16. 16.

    N.G. Margiani, I.R. Metskhvarishvili, Z.A. Adamia, T.D. Medoidze, N.A. Papunashvili, D.I. Dzanashvili, M.I. Chubabria, J. Supercond. Novel Magn. 26, 965–968 (2013)

    CAS  Google Scholar 

  17. 17.

    M. Zargar Shoushtari, S.E. Mousavi Ghahfarokhi, J. Supercond. Novel Magn. 24, 1505–1511 (2011)

    CAS  Google Scholar 

  18. 18.

    A.I. Abou Aly, M.M.H. Abdel Gawad, R. Awad, I.G. Eldeen, J. Supercond. Novel Magn. 24, 2077–2084 (2011)

    CAS  Google Scholar 

  19. 19.

    G. Kırat, O. Kızılaslan, M.A. Aksan, Ceram. Int. 42, 15072–15076 (2016)

    Google Scholar 

  20. 20.

    M. Mora, A. Sotelo, H. Amaveda, M.A. Madre, J.C. Diez, L.A. Angurel, G.F. de la Fuente, Bol. Soc. Esp. Ceram. 44, 199–203 (2005)

    CAS  Google Scholar 

  21. 21.

    S. Şakiroğlu, K. Kocabaş, J. Supercond. Novel Magn. 24, 1321–1325 (2011)

    Google Scholar 

  22. 22.

    S.M. Khalil, J. Phys. Chem. Solids 62, 457–466 (2001)

    CAS  Google Scholar 

  23. 23.

    A. Sotelo, M.A. Madre, J.C. Diez, Sh Rasekh, L.A. Angurel, E. Martinez, Supercond. Sci. Technol. 22, 034012 (2009)

    Google Scholar 

  24. 24.

    M.A. Madre, H. Amaveda, M. Mora, A. Sotelo, L.A. Angurel, J.C. Diez, Bol. Soc. Esp. Ceram. 47, 148–152 (2008)

    CAS  Google Scholar 

  25. 25.

    Y.L. Chen, R. Stevens, J. Am. Ceram. Soc. 75, 1150–1159 (1992)

    CAS  Google Scholar 

  26. 26.

    R. Ramesh, G. Thomas, S. Green, C. Jiang, Y. Mei, M.L. Rudee, H.L. Luo, Phys. Rev. B 38, 7070–7073 (1988)

    CAS  Google Scholar 

  27. 27.

    B. Özçelik, B. Özkurt, M.E. Yakıncı, A. Sotelo, M.A. Madre, J. Supercond. Novel Magn. 26, 873–878 (2013)

    Google Scholar 

  28. 28.

    B. Özkurt, M.A. Madre, A. Sotelo, M.E. Yakıncı, B. Özçelik, J. Supercond. Novel Magn. 25, 799–804 (2012)

    Google Scholar 

  29. 29.

    B. Özkurt, M.A. Madre, A. Sotelo, M.E. Yakıncı, B. Özçelik, J.C. Diez, J. Supercond. Novel Magn. 26, 1093–1098 (2013)

    Google Scholar 

  30. 30.

    B. Özkurt, M.A. Madre, A. Sotelo, J.C. Diez, Phys. B 426, 85–89 (2013)

    Google Scholar 

  31. 31.

    F.M. Costa, Sh Rasekh, N.M. Ferreira, A. Sotelo, J.C. Diez, M.A. Madre, J. Supercond. Novel Magn. 26, 943–946 (2013)

    CAS  Google Scholar 

  32. 32.

    B. Zeimetz, S.X. Dou, H.K. Liu, Supercond. Sci. Technol. 11, 1082–1086 (1998)

    CAS  Google Scholar 

  33. 33.

    V. Garnier, I. Monot, G. Desgardin, Supercond. Sci. Technol. 13, 602–611 (2000)

    CAS  Google Scholar 

  34. 34.

    B. Özkurt, J. Supercond. Novel Magn. 31, 2459–2464 (2018)

    Google Scholar 

  35. 35.

    B. Özkurt, M.A. Madre, A. Sotelo, J.C. Diez, J. Supercond. Novel Magn. 26, 3247–3252 (2013)

    Google Scholar 

  36. 36.

    A. Sotelo, M.A. Madre, S. Rasekh, G. Constantinescu, M.A. Torres, J.C. Diez, J. Supercond. Novel Magn. 26, 985–990 (2013)

    CAS  Google Scholar 

  37. 37.

    G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci. Mater. Electron. 23, 928–935 (2012)

    CAS  Google Scholar 

  38. 38.

    M. Viret, J.F. Lawler, J.G. Lunney, Supercond. Sci. Technol. 6, 490–496 (1993)

    CAS  Google Scholar 

  39. 39.

    V. Garnier, R. Caillard, A. Sotelo, G. Desgardin, Physica C 319, 197–208 (1999)

    CAS  Google Scholar 

  40. 40.

    H. Maeda (ed.), Bismuth-Based High-Temperature Superconductors (CRC Press, Boca Raton, 1996)

    Google Scholar 

  41. 41.

    A. Sidorenko, E.W. Scheidta, F. Haidera, M. Klemma, S. Horna, L. Konopkob, R. Tidecksa, Phys. B 321, 298–300 (2002)

    CAS  Google Scholar 

  42. 42.

    E. Taylan Koparan, A. Surdu, A. Awawdeh, A. Sidorenko, E. Yanmaz, J. Supercond. Novel Magn. 25, 1761–1767 (2012)

    Google Scholar 

  43. 43.

    E. Taylan Koparan, A. Surdu, A. Sidorenko, E. Yanmaz, Physica C 473, 1–5 (2012)

    CAS  Google Scholar 

  44. 44.

    A.E. Surdu et al., Beilstein J. Nanotechnol. 2, 809–813 (2011)

    CAS  Google Scholar 

  45. 45.

    Z.Y. Jia, H. Tang, Z.Q. Yang, Y.T. Xing, Y.Z. Wang, G.W. Qiao, Physica C 337, 130–132 (2000)

    CAS  Google Scholar 

  46. 46.

    B. Zhao, W.H. Song, X.C. Wu, J.J. Du, Y.P. Sun, H.H. Wen, Z.X. Zhao, Physica C 361, 283–291 (2001)

    CAS  Google Scholar 

  47. 47.

    Y. Zalaoglu, G. Yildirim, J. Mater. Sci. Mater. Electron. 28, 17693–17701 (2017)

    CAS  Google Scholar 

  48. 48.

    N.K. Saritekin, M. Pakdil, E. Bekiroglu, G. Yildirim, J. Alloys Compd. 688, 637–646 (2016)

    CAS  Google Scholar 

  49. 49.

    Y. Zalaoglu, F. Karaboga, C. Terzioglu, G. Yildirim, Ceram. Int. 43, 6836–6844 (2017)

    CAS  Google Scholar 

  50. 50.

    U. Öztornacı, B. Özkurt, Ceram. Int. 43, 4545–4550 (2017)

    Google Scholar 

  51. 51.

    B. Özkurt, J. Mater. Sci. Mater. Electron. 30, 14547–14553 (2019)

    Google Scholar 

  52. 52.

    B. Özkurt, M.A. Madre, A. Sotelo, J.C. Diez, J. Mater. Sci. Mater. Electron. 24, 3344–3351 (2013)

    Google Scholar 

  53. 53.

    J. Economy, R. Anderson, Inorg. Chem. 5, 989–992 (1966)

    CAS  Google Scholar 

  54. 54.

    J. Jiang, Mater. Lett. 61, 3239–3242 (2007)

    CAS  Google Scholar 

  55. 55.

    F. Haque, K.S. Rahman, M. Akhtaruzzaman, H. Abdullah, T.S. Kiong, N. Amin, Mater. Res. Express 5, 096409 (2018)

    Google Scholar 

  56. 56.

    D. Yazıcı, M. Erdem, B. Özçelik, J. Supercond. Novel Magn. 25, 725–729 (2012)

    Google Scholar 

  57. 57.

    A. Polasek, P. Majewski, E.T. Serra, F. Rizzo, F. Aldinger, Mater. Res. 7, 393–408 (2004)

    CAS  Google Scholar 

  58. 58.

    M.M. Abbas, L.K. Abbas, U. Salman, Energy Procedia 18, 215–224 (2012)

    CAS  Google Scholar 

  59. 59.

    C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)

    Google Scholar 

  60. 60.

    B. Heeb, L.J. Gauckler, J. Mater. Res. 8, 2170–2176 (1993)

    CAS  Google Scholar 

Download references


All samples have been prepared in the Physics Laboratory in Tarsus University in Turkey. SEM and XRD measurements have been made in Nanotechnology Research Center (ERNAM) in the Erciyes University and in the MEİTAM Central Laboratory in Mersin University, respectively. The other measurements in this study have been made in the METU Central Laboratory in Middle East Technical University in Ankara in Turkey.

Author information



Corresponding author

Correspondence to Berdan Özkurt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Özkurt, B. Effect of annealing conditions on the superconducting properties of nano-sized metallic Au-added Bi1.8Sr2Au0.2Ca1.1Cu2.1Oy (Bi-2212) ceramics. J Mater Sci: Mater Electron 31, 11448–11456 (2020). https://doi.org/10.1007/s10854-020-03693-0

Download citation