Electromagnetic wave absorbing performances with Fe2O3 nanotubes/reduced graphene oxide composite sponge


Electromagnetic wave absorbing materials which are low in cost and light weight are highly desirable, especially if they can be easily manufactured. A special Fe2O3 nanotubes /reduced graphene oxide (RGO) composite sponge with a 3D (three dimensional) plus 2D (two dimensional) structure was produced. The Fe2O3 nanotubes /RGO composite sponge exhibits excellent microwave absorption capacity. Different amounts of Fe2O3 nanotubes in the RGO sponge work well in improving absorption effectiveness. Specifically, by using a small amount of Fe2O3 nanotubes, the desired absorption bandwidth gets to 8.7 GHz and obtains the best attenuation property among other samples tested, and with a moderate number of Fe2O3 nanotubes added which exhibits an outstanding degree of impedance matching performance. A large amount of Fe2O3 nanotubes will narrow down the desired absorption bandwidth, but it will enhance the minimum reflection loss. These excellent performances of the composites originate from the altered dielectric constants, scattering parameters and the unique multi-dimensional structure. A good microwave absorber should have a good impedance matching performance with an effective attenuation property at the same time. It can be concluded that having low S11 value is expected to have a good matching performance while S21 value can be a sign of microwave dissipation ability.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, S.A.A. Hamid, J. Appl. Phys. 92, 876–882 (2002)

    CAS  Article  Google Scholar 

  2. 2.

    A.N. Yusoff, M.H. Abdullah, J. Magn. Magn. Mater. 269, 271–280 (2004)

    CAS  Article  Google Scholar 

  3. 3.

    R. Kumar, S.R. Dhakate, T. Gupta, P. Saini, B.P. Singh, R.B. Mathur, J. Mater. Chem. A 1, 5727–5735 (2013)

    CAS  Article  Google Scholar 

  4. 4.

    F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353, 1137–1140 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    X.X. Wang, J.C. Shu, W.Q. Cao, M. Zhang, J. Yuan, M.S. Cao, Chem. Eng. J. 369, 1068–1077 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    J. Tang, S. Bi, X. Wang, G. Hou, X. Su, C. Liu, Y. Lin, H. Li, J. Mater. Sci. 54, 13990–14001 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906–3924 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    Y. Wu, N. Yi, L. Huang, T. Zhang, S. Fang, H. Chang, N. Li, J. Oh, J.A. Lee, M. Kozlov, A.C. Chipara, H. Terrones, P. Xiao, G. Long, Y. Huang, F. Zhang, L. Zhang, X. Lepro, C. Haines, M.D. Lima, N.P. Lopez, L.P. Rajukumar, A.L. Elias, S. Feng, S.J. Kim, N.T. Narayanan, P.M. Ajayan, M. Terrones, A. Aliev, P. Chu, Z. Zhang, R.H. Baughman, Y. Chen, Nat. Commun. 6, 6141 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Adv. Mater. 27, 2049–2053 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, Y. Chen, Adv. Funct. Mater. 28, 1704363 (2018)

    Article  Google Scholar 

  11. 11.

    H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z. Liu, Q. Shi, P. Xiao, Y. Yang, T. Zhang, Y. Chen, Carbon 124, 506–514 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    M.S. Cao, X.X. Wang, W.Q. Cao, J. Yuan, J. Mater. Chem. C 3, 6589–6599 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    P. He, Z.L. Hou, K.L. Zhang, J. Li, K. Yin, S. Feng, S. Bi, J. Mater. Sci. 52, 8258–8267 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    Q. Hu, X. Qi, H. Cai, R. Xie, L. Long, Z. Bai, Y. Jiang, S. Qin, W. Zhong, Y. Du, Sci. Rep. 7, 11213 (2017)

    Article  Google Scholar 

  15. 15.

    X. Wang, B. Zhang, W. Zhang, M. Yu, L. Cui, X. Cao, J. Liu, Sci. Rep. 7, 1584 (2017)

    Article  Google Scholar 

  16. 16.

    Y. Shi, X. Gao, J. Qiu, Ceram. Int. 45, 3126–3132 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    J. Qiu, T. Qiu, Carbon 81, 20–28 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    W.F. Liang, R.B. Yang, S.T. Choi, Ferroelectrics 434, 100–106 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    J.L. Wallace, IEEE Trans. Magn. 29, 4209–4214 (1993)

    Article  Google Scholar 

  20. 20.

    C. Song, X. Yin, M. Han, X. Li, Z. Hou, L. Zhang, L. Cheng, Carbon 116, 50–58 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Xu, K. Sheng, C. Li, G. Shi, Acs Nano 4, 4324–4330 (2010)

    CAS  Article  Google Scholar 

  22. 22.

    R.M. Silverstein, G.C. Bassler, J. Chem. Educ. 39, 546 (1962)

    CAS  Article  Google Scholar 

  23. 23.

    X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, Rsc Adv. 2, 8821–8826 (2012)

    CAS  Article  Google Scholar 

  24. 24.

    H. Zhang, A. Xie, C. Wang, H. Wang, Y. Shen, X. Tian, J. Mater. Chem. A 1, 8547–8552 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    X. Gao, X. Wu, J. Qiu, Adv. Electron. Mater. 4, 1700565 (2018)

    Article  Google Scholar 

  26. 26.

    V. Weston, I.E.E.E.T. Antenn, Propag. 11, 578–584 (1963)

    Article  Google Scholar 

  27. 27.

    X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, H. Xue, J. Mater. Chem. C 1, 765–777 (2013)

    CAS  Article  Google Scholar 

  28. 28.

    J. Shin, J. Oh, IEEE Trans. Magn. 29, 3437–3439 (1993)

    Article  Google Scholar 

  29. 29.

    B. Odom, D. Hanneke, B. d’Urso, G. Gabrielse, Phys. Rev. Lett. 97, 030801 (2006)

    CAS  Article  Google Scholar 

  30. 30.

    M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L. Zhang, C. Gong, J. Phys. D 53, 02TL01 (2020)

    Article  Google Scholar 

  31. 31.

    V.V. Mitic, V. Paunovic, G. Lazovic, L. Kocic, B. Vlahovic, Ferroelectrics 536, 60–76 (2018)

    CAS  Article  Google Scholar 

  32. 32.

    B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, J. Yuan, Adv. Mater. 26, 3484–3489 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    J. Ding, L. Wang, Y. Zhao, L. Xing, X. Yu, G. Chen, J. Zhang, R. Che, Small 15, 1902885 (2019)

    Article  Google Scholar 

  34. 34.

    M. Samet, A. Kallel, A. Serghei, J. Appl. Polym. Sci. 136, 47551 (2019)

    Article  Google Scholar 

  35. 35.

    H.T. Guan, H.Y. Wang, Y.L. Zhang, C.J. Dong, G. Chen, Y.D. Wang, J.B. Xie, Appl. Surf. Sci. 447, 261–268 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48, 788–796 (2010)

    CAS  Article  Google Scholar 

  37. 37.

    D. Kim, Y. Chung, T. Kang, H. Kim, IEEE Trans. Magn. 32, 555–558 (1996)

    CAS  Article  Google Scholar 

  38. 38.

    H. Kwon, J. Shin, J. Oh, J. Appl. Phys. 75, 6109–6111 (1994)

    CAS  Article  Google Scholar 

Download references


This work was supported by the Key Basic Research Project of Shanghai (16JC1403300), and the National Nature Science Foundation of China (51641306) and the National Science Foundation of Shanghai (16ZR1446200).

Author information



Corresponding author

Correspondence to Jun Qiu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhan, R. & Qiu, J. Electromagnetic wave absorbing performances with Fe2O3 nanotubes/reduced graphene oxide composite sponge. J Mater Sci: Mater Electron 31, 11366–11378 (2020). https://doi.org/10.1007/s10854-020-03685-0

Download citation