Resource utilization of chlorosilane residual liquid to prepare nano-silica in reverse microemulsion system

Abstract

Nano-silica particles were prepared using chlorosilane residual liquid as raw materials in an inverse microemulsion system formed by three different surfactants (TX-100, CTAB, SDS) with n-hexanol, cyclohexane, and ammonia. The phase behavior of inverse microemulsions and the preparation of nano-silica were investigated. The results showed that the system composed of non-ionic surfactant TX-100 had a larger inverse microemulsion region than other two system and was more suitable for the preparation of nano-silica. The prepared nano-silica had uniform sphericity and good dispersibility, the average particle diameter of 31 nm, and the variance of 1 nm. XRD, FT-IR, N2 adsorption/desorption experiments and TG-DSC analysis were used to characterize the prepared nano-silica. The results showed that the prepared nano-silica was amorphous mesoporous silica with a BET specific surface area of 472.5 m2/g. They have a good thermal stability, and the phase structure and main chemical functional groups of nano-silica would not change after calcination at 600 °C, but the nano-silica would undergo a phase change at 1135 °C, which changed from amorphous to crystalline. The new technology not only broadened the source of preparation of nano-silica materials, but also provided new ideas for the treatment of chlorosilane residual liquid and the sustainable development of polysilicon industry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    X. Chen, J. Jiang, F. Yan, S. Tian, A novel low temperature vapor phase hydrolysis method for the production of nano-structured silica materials using silicon tetrachloride. RSC Adv. 4, 8703–8710 (2014)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Ding, R. Yamada, R. Gresback, S. Zhou, X.D. Pi, T. Nozaki, A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor. J. Phys. D 47, 485202 (2014)

    Article  Google Scholar 

  3. 3.

    A. Ghisi, R. Mirzazadeh, Statistical investigation of the mechanical and geometrical properties of polysilicon films through on-chip tests. Micromachines 9, 53 (2018)

    Article  Google Scholar 

  4. 4.

    S. Choudhary, Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA-PVP blend based polymer nanocomposites for their flexible nanodielectric applications. J. Mater. Sci. Mater. Electron. 29, 10517–10534 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    X.S. Zhao, X.F. Zhao, L. Yin, Design, Simulation and characteristics research of the interface circuit based on nano-polysilicon thin films pressure sensor. J. Phys. Conf. Ser. 986, 012034 (2018)

    Article  Google Scholar 

  6. 6.

    M.A. Colomb, S.D. Straight, Y. Hanaue, Characterization and hazards of the silicon-based polymers produced in the manufacture of ultrapure polysilicon. Ind. Eng. Chem. Res. 59, 7 (2020)

    Article  Google Scholar 

  7. 7.

    L. Tune, P. Barta, D. Wong, R.E. Powers, G. Pearlson, A.Y. Tien, Influences of deposition and crystallization kinetics on the properties of silicon films deposited by low-pressure chemical vapour deposition from silane and disilane. Thin Solid Films 518, 6897–6903 (2018)

    Google Scholar 

  8. 8.

    C.J. Wang, T.F. Wang, P.L. Li, Z.W. Wang, Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor. Chem. Eng. J. 220, 81–88 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    L.F. Zhang, Y. Tan, Z.Q. Yang, Z.F. Gao, Y. Nie, Effect of temperature on performance parameters of metallurgical grade polysilicon solar cells. Appl. Mech. Mater 148–149, 1252–1255 (2011)

    Article  Google Scholar 

  10. 10.

    E. Robert, T. Zijlema, Process for the production of Si by reduction of SiCl4 with liquid Zn. US patent 7943109 (2011)

  11. 11.

    L. Fabry, U. Paetzold, M. Stepp, Recycling of high-boiling compounds within an integrated chlorosilane system. US patent 8557210 (2013)

  12. 12.

    K. Hesse, F. Schreieder, Process for depositing polycrystalline silicon. US patent 7708970, B2 (2010)

  13. 13.

    J. Zhang, B. Xu, S.P. Hu, Y.L. Feng, Controllable preparation of multi-morphology nanosized silica by hydrolysis of mixed chlorosilanes in mixed solvent of alcohol and water. Adv. Mater. Res. 152–153, 1267–1271 (2010)

    Google Scholar 

  14. 14.

    R. Kishi, M. Ishida, S. Netsu, Trichlorosilane purification system and method for producing polycrystalline silicon. US patent 20180086645 (2019)

  15. 15.

    A. Sriboonruang, T. Kumpika, E. Kantarak, Isomer effect on chemical reactivity and superhydrophobicity of chlorosilane modified SiO2 nanoparticles prepared by one-step reaction. Mater. Lett. 248, 227–230 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    P.G. Sennikov, A.P. Kotkov, S.A. Adamchik, N.D. Grishnova, L.A. Chuprov, Impurities in monosilanes synthesized by different processes. Inorg. Mater. 46, 358–363 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    W. Yuan, P. Smirnov, M. Oestreich, Custom hydrosilane synthesis based on monosilane. Chem 4, 1443–1450 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    S. Janardan, P. Suman, G. Ragul, U. Anjaneyulu, Assessment on the antibacterial activity of nanosized silica derived from hypercoordinated silicon(IV) precursors. RSC Adv. 6, 66394–66406 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    J.X. Cai, B. Huang, Q.K. Ma, W.W. Zhang, A new process of acidic hydrolysis of residual chlorosilane liquid for the preparation of silica and hydrochloric acid. Korean J. Chem. Eng. 34, 1793–1800 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    B. Kohler, E. Schulz, B. Vendtm, Separation of metal chlorides from their suspensions in chlorosilanes. US patent 6602482 (2003)

  21. 21.

    S. Kirii, M. Narukawa, H. Takesue, Process for producing hexachlorodisilane. US patent 6846473 (2005)

  22. 22.

    L.M. Coleman, W. Tambo, Waste treatment in silicon production operations. US patent 4519999A (1985)

  23. 23.

    W.C. Breneman, C.C. Yang, G. Henningsen, Treatment of wastes from high purity silicon process. US patent 4743344 (1988)

  24. 24.

    J. Ding, Z. Qin, H. Luo, Nano-silica modified phenolic resin film: manufacturing and properties. Nanotechnol. Rev. 9, 209–218 (2020)

    Article  Google Scholar 

  25. 25.

    Y. Xie, J. Wang, M. Wang, X. Ge, Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere, and its selectively adsorption property for Pb2+ in aqueous solution. J. Hazard. Mater. 297, 66–73 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    X. Du, X. Li, H. Huang, J. He, X. Zhang, Dendrimer-like hybrid particles with tunable hierarchical pores. Nanoscale. 7, 6173–6184 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    N.A.A. Fatah, S. Triwahyono, A.A. Jalil, A. Ahmad, T.A.T. Abdullah, n-Heptane isomerization over mesostructured silica nanoparticles(MSN), Dissociative-adsorption of molecular hydrogen on Pt and mosites. Appl. Catal. A 516, 135–143 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    Y. Wang, Y. Liu, W. Zhan, A field experiment on stabilization of Cd in contaminated soils by surface-modified nano-silica (SMNS) and its phyto-availability to corn and wheat. J. Soils Sedim. 20, 91–98 (2020)

    Article  Google Scholar 

  29. 29.

    M. Mohammadikish, M. Masteri-Farahani, T. Mahdian, Optical properties of copper tungstate nanoparticles prepared by microemulsion method. Synth. React. Inorg. Met. Org. Chem. 49, 63–68 (2019)

    CAS  Google Scholar 

  30. 30.

    A.M. Perez-Coronado, C. Soares, O.S.G.P. Luisa, Catalytic reduction of bromate over catalysts based on Pd nanoparticles synthesized via water-in-oil microemulsion. Appl. Catal. B 237, 206–213 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    Y. Xu, J. Suthar, R. Egbu, Reverse microemulsion synthesis of layered gadolinium hydroxide nanoparticles. J. Solid State Chem. 258, 320–327 (2012)

    Article  Google Scholar 

  32. 32.

    X.L. Zhang, Y.L. Fan, Preparation of spherical silica particles in reverse micro emulsions using silicon tetrachloride as precursor. J. Non-Cryst. Solids 358, 337–341 (2012)

    CAS  Article  Google Scholar 

  33. 33.

    D.J. Mitchell, B.W. Ninham, Micelles vesicles and microemulsions. J. Chem. Soc. Faraday Trans. 77, 601–629 (1981)

    CAS  Article  Google Scholar 

  34. 34.

    Y. Xiao, Y. Wang, G. Luo, S. Bai, Using hydrolysis of silicon tetrachloride to prepare highly dispersed precipitated nanosilica. Chem. Eng. J. 283, 1–8 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    P.R. Pinto, L.C. Mendes, M.L. Dias, C. Azuma, Synthesis of acrylic-modified sol-gel silica. Colloid Polym. Sci. 284, 529–535 (2006)

    CAS  Article  Google Scholar 

  36. 36.

    A. Fidalgo, R. Ciriminna, L.M. Ilharco, M. Pagliaro, Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol-gel catalysts. Chem. Mater. 17, 6686–6694 (2005)

    CAS  Article  Google Scholar 

  37. 37.

    N. Pijarn, A. Jaroenworaluck, W. Sunsaneeyametha, R. Stevens, Synthesis and characterization of nanosized-silica gels formed under controlled conditions. Powder Technol. 203, 462–468 (2010)

    CAS  Article  Google Scholar 

  38. 38.

    F. Yan, J.G. Jiang, S.C. Tian, Z.W. Liu, J. Shi, K.M. Li, X.J. Chen, Y.W. Xu, A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash. ACS Sustain. Chem. Eng. 4, 4654–4661 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    S. Cerveny, G.A. Schwartz, J. Otegui, J. Colmenero, J. Loichen, S. Westermann, Dielectric study of hydration water in silica nanoparticles. J. Phys. Chem. C 116, 24340–24349 (2012)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study were financially supported by the inside school subject of Kashgar University (Grant No. 19 2656) and Kunming Metallurgical Institute New Materials Co., Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Huang, B., Zhang, J. et al. Resource utilization of chlorosilane residual liquid to prepare nano-silica in reverse microemulsion system. J Mater Sci: Mater Electron 31, 11317–11324 (2020). https://doi.org/10.1007/s10854-020-03680-5

Download citation