Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation

Abstract

In this study the catalytic ability of green synthesized nickel oxide nanoparticles (NiO NPs) is investigated for degradation of methyl orange as a hazardous environmentally contamination in water. The NiO NPs was prepared at ambient conditions using the antioxidant content of Punica granatum L. (pomegranate) juice extract and their bio-reducing ability were studied in details. This process is entirely green process, free from toxic and hazardous solvent. The biosynthesized NiO NPs were in nano scale and their morphology, sizes, surface area and optical properties were characterized using field emission scanning electron microscope (FE-SEM), BET surface area analysis, thermogravimetric analysis, energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD) and ultraviolet–visible spectroscopy (UV–Vis). The biosynthesized NiO NPs were found to be active catalysts, particularly with the reducing agents for instance sodium borohydride, for the degradation of the toxic organic dyes such as methyl orange (MO) in contaminated water. The NiO NPs are stable and reusable for reducing MO to its leuco-form, in a short time, in an aqueous medium in the absence of reducing agents. This method is much cheaper than the other methods. The catalytic activity of NiO NPs can be explained by its small size, compared with the bulk materials, which produce numerous active sites due to its big surface area per unit volume.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019)

    CAS  Google Scholar 

  2. 2.

    R. Parker, Quantum Confinement: Effects, Observations and Insights (Nova Science Publishers, Incorporated, 2017)

    Google Scholar 

  3. 3.

    D. Zhang, Y. Jin, Y. Cao, Facile synthesis and ammonia gas sensing properties of NiO nanoparticles decorated MoS2 nanosheets heterostructure. J. Mater. Sci.: Mater. Electron. 30(1), 573–581 (2019)

    Google Scholar 

  4. 4.

    D. Zhang et al., Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci.: Mater. Electron. 27(4), 3723–3730 (2016)

    CAS  Google Scholar 

  5. 5.

    M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiO nanoparticles by sol–gel method. J. Mater. Sci.: Mater. Electron. 23(3), 728–732 (2012)

    CAS  Google Scholar 

  6. 6.

    E. Azaceta et al., One-step wet chemical deposition of NiO from the electrochemical reduction of nitrates in ionic liquid based electrolytes. Electrochim. Acta 96, 261–267 (2013)

    CAS  Google Scholar 

  7. 7.

    C. Schoeberl, M. Manolova, R. Freudenberger, Sol-gel-deposited cobalt and nickel oxide as an oxygen evolution catalyst in alkaline media. Int. J. Hydrog. Energy 40(35), 11773–11778 (2015)

    CAS  Google Scholar 

  8. 8.

    S.S. Ahmed, E.K. Hassan, G.H. Mohamed, Investigation of optical properties of NiO0.99Cu0.01 thin film by thermal evaporation. Int. J. 2(2), 633–638 (2014)

    Google Scholar 

  9. 9.

    D. Siingh et al., The atmospheric global electric circuit: an overview. Atmos. Res. 84(2), 91–110 (2007)

    Google Scholar 

  10. 10.

    F. Motahari, M.R. Mozdianfard, M. Salavati-Niasari, Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Process Saf. Environ. Prot. 93, 282–292 (2015)

    CAS  Google Scholar 

  11. 11.

    A.A. Ezhilarasi et al., Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol. B 164, 352–360 (2016)

    CAS  Google Scholar 

  12. 12.

    X. Xu et al., YSZ thin films deposited by spin-coating for IT-SOFCs. Ceram. Int. 31(8), 1061–1064 (2005)

    CAS  Google Scholar 

  13. 13.

    P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003)

    CAS  Google Scholar 

  14. 14.

    O.V. Kharissova et al., The greener synthesis of nanoparticles. Trends Biotechnol. 31(4), 240–248 (2013)

    CAS  Google Scholar 

  15. 15.

    K. Parveen, V. Banse, L. Ledwani, Green synthesis of nanoparticles: their advantages and disadvantages, in AIP Conference Proceedings (AIP Publishing, 2016)

  16. 16.

    Z. Monsef Khoshhesab, K. Gonbadi, G. Rezaei Behbehani, Removal of reactive black 8 dye from aqueous solutions using zinc oxide nanoparticles: investigation of adsorption parameters. Desalin Water Treat 56(6), 1558–1565 (2015)

    CAS  Google Scholar 

  17. 17.

    G. Mezohegyi et al., Advanced bioreduction of commercially important azo dyes: modeling and correlation with electrochemical characteristics. Ind. Eng. Chem. Res. 48(15), 7054–7059 (2009)

    CAS  Google Scholar 

  18. 18.

    U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J. Hazard. Mater. 170(2–3), 520–529 (2009)

    CAS  Google Scholar 

  19. 19.

    H.M. Pinheiro, E. Touraud, O. Thomas, Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm. 61(2), 121–139 (2004)

    CAS  Google Scholar 

  20. 20.

    A. Bhankhar et al., Study on degradation of methyl orange-an azo dye by silver nanoparticles using UV–Visible spectroscopy. Indian J. Phys. 88(11), 1191–1196 (2014)

    CAS  Google Scholar 

  21. 21.

    K.-T. Chung, Azo dyes and human health: a review. J. Environ. Sci. Health Part C 34(4), 233–261 (2016)

    CAS  Google Scholar 

  22. 22.

    S. Hildenbrand et al., Azo dyes and carcinogenic aromatic amines in cell cultures. Int. Arch. Occup. Environ. Health 72(3), M052–M056 (1999)

    Google Scholar 

  23. 23.

    S. Zhu et al., High adsorption capacity for dye removal by CuZn hydroxyl double salts. Environ. Sci.: Nano 1(2), 172–180 (2014)

    CAS  Google Scholar 

  24. 24.

    M. Rani, U. Shanker, Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures. Coll. Surf. A: Physicochem. Eng. Asp. 553, 546–561 (2018)

    CAS  Google Scholar 

  25. 25.

    V.M. Correia, T. Stephenson, S.J. Judd, Characterisation of textile wastewaters-a review. Environ. Technol. 15(10), 917–929 (1994)

    CAS  Google Scholar 

  26. 26.

    A.A. Prasada, G. Kumara, D.M. Thomasb, Bulletin of chemical and pharma research. Bull. Chem. Pharma Res 1(1), 30–39 (2017)

    Google Scholar 

  27. 27.

    M. Tarrago et al., Valorization of sludge from a wastewater treatment plant by glass-ceramic production. Ceram. Int. 43(1), 930–937 (2017)

    CAS  Google Scholar 

  28. 28.

    J. Niu et al., Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: kinetics and mechanism. J. Environ. Sci 25(6), 1098–1106 (2013)

    CAS  Google Scholar 

  29. 29.

    E. Kalkan et al., Removal of textile dye Reactive Black 5 from aqueous solution by adsorption on laccase-modified silica fume. Desalin. Treat 52(31–33), 6122–6134 (2014)

    CAS  Google Scholar 

  30. 30.

    J. Vijayaraghavan, S.S. Basha, J. Jegan, A review on efficacious methods to decolorize reactive azo dye. J. Urban Environ. Eng. 7(1), 30–47 (2013)

    Google Scholar 

  31. 31.

    Z. Sadowski, A. Pawlowska, Synthesis of metal oxide nanoparticles and its biomedical applications, in Nanotechnology Applied to Pharmaceutical Technology (Springer, Berlin, 2017), pp. 91–111

  32. 32.

    C. Mohammadi et al., Green synthesis of ZnO nanoparticles using the aqueous extract of Euphorbia petiolata and study of its stability and antibacterial properties. Moroc. J. Chem. 5(3), 476–484 (2017)

    CAS  Google Scholar 

  33. 33.

    Q. Zhang et al., CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater Sci. 60, 208–337 (2014)

    CAS  Google Scholar 

  34. 34.

    A. Tadjarodi et al., Preparation of CdO rhombus-like nanostructure and its photocatalytic degradation of azo dyes from aqueous solution. Nanomater. Nanotechnol. 4(Godište 2014), 4–16 (2014)

    Google Scholar 

  35. 35.

    M. El-Kemary, N. Nagy, I. El-Mehasseb, Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 16(6), 1747–1752 (2013)

    CAS  Google Scholar 

  36. 36.

    M. Hassanpour et al., Microwave synthesis of CuO/NiO magnetic nanocomposites and its application in photo-degradation of methyl orange. J. Mater. Sci.: Mater. Electron. 27(3), 2718–2727 (2016)

    CAS  Google Scholar 

  37. 37.

    M. Imran Din, A. Rani, Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int. J. Anal. Chem. (2016). https://doi.org/10.1155/2016/3512145

    Article  Google Scholar 

  38. 38.

    K. Ukoba, A. Eloka-Eboka, F. Inambao, Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew. Sustain. Energy Rev. 82, 2900–2915 (2017)

    Google Scholar 

  39. 39.

    M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Rapid and eco-friendly synthesis of NiO/ZnO nanocomposite and its application in decolorization of dye. J. Mater. Sci.: Mater. Electron. 28(15), 10830–10837 (2017)

    CAS  Google Scholar 

  40. 40.

    M. Ramesh et al., Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 33(5), 601–610 (2018)

    CAS  Google Scholar 

  41. 41.

    A.A. Ezhilarasi et al., Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol., B 180, 39–50 (2018)

    Google Scholar 

  42. 42.

    Z. Sabouri et al., Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J. Mol. Struct. 1173, 931–936 (2018)

    CAS  Google Scholar 

  43. 43.

    P. Kganyago et al., Synthesis of NiO nanoparticles via a green route using Monsonia burkeana: the physical and biological properties. J. Photochem. Photobiol. B 182, 18–26 (2018)

    CAS  Google Scholar 

  44. 44.

    F.L.A. Hossin, Effect of pomegranate (Punica granatum) peels and it’s extract on obese hypercholesterolemic rats. Pak. J. Nutr. 8(8), 1251–1257 (2009)

    Google Scholar 

  45. 45.

    M. Viladomiu et al., Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. Evid.-Based Complement. Altern. Med. 2013. https://doi.org/10.1155/2013/789764

    Article  Google Scholar 

  46. 46.

    M. Viuda-Martos, J. Fernández-López, J. Pérez-Álvarez, Pomegranate and its many functional components as related to human health: a review. Compr. Rev. Food Sci. Food Saf. 9(6), 635–654 (2010)

    CAS  Google Scholar 

  47. 47.

    N.A.N. Mohamad, et al., Plant extract as reducing agent in synthesis of metallic nanoparticles: a review, in Advanced Materials Research (Trans Tech Publ, 2014)

  48. 48.

    M. Nasrollahzadeh et al., Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium (VI), nitro compounds and organic dyes. Mater. Res. Bull. 102, 24–35 (2018)

    CAS  Google Scholar 

  49. 49.

    S.M. Sajadi et al., Green synthesis of the Ag/bentonite nanocomposite using Euphorbia larica extract: a reusable catalyst for efficient reduction of nitro compounds and organic dyes. ChemistrySelect 3(43), 12274–12280 (2018)

    CAS  Google Scholar 

  50. 50.

    A. Barzinjy, S. Mustafa, H. Ismael, Characterization of ZnO NPs prepared from green synthesis using Euphorbia Petiolata leaves. EAJSE 4, 74–83 (2019)

    Google Scholar 

  51. 51.

    A.A. Barzinjy et al., Green synthesis of the magnetite (Fe3O4) nanoparticle using Rhus coriaria extract: a reusable catalyst for efficient synthesis of some new 2-naphthol bis-Betti bases. Inorg. Nano-Met. Chem. (2020). https://doi.org/10.1080/24701556.2020.1723027

    Article  Google Scholar 

  52. 52.

    V. Makarov et al., “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия) 6(1), 20 (2014)

    Google Scholar 

  53. 53.

    A.M. Youssef Moustafa, A.I. Khodair, M.A. Saleh, Isolation, structural elucidation of flavonoid constituents from Leptadenia pyrotechnica and evaluation of their toxicity and antitumor activity. Pharm. Biol. 47(6), 539–552 (2009)

    CAS  Google Scholar 

  54. 54.

    I. Bibi et al., Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J. Mater. Res. Technol. 8(6), 6115–6124 (2019)

    CAS  Google Scholar 

  55. 55.

    A. Rahdar, M. Aliahmad, Y. Azizi, NiO nanoparticles: synthesis and characterization. J. Nanostruct. 5(2), 145–151 (2015)

    Google Scholar 

  56. 56.

    G.A. Babu et al., An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route. J. Mater. Sci.: Mater. Electron. 25(12), 5231–5240 (2014)

    Google Scholar 

  57. 57.

    B.D. Viezbicke et al., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b) 252(8), 1700–1710 (2015)

    CAS  Google Scholar 

  58. 58.

    K. Varunkumar et al., Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Mater. Sci. Semicond. Process. 66, 149–156 (2017)

    CAS  Google Scholar 

  59. 59.

    N.M. Hosny, Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 30(3), 470–476 (2011)

    CAS  Google Scholar 

  60. 60.

    Z. Parsaee, Synthesis of novel amperometric urea-sensor using hybrid synthesized NiO-NPs/GO modified GCE in aqueous solution of cetrimonium bromide. Ultrason. Sonochem. 44, 120–128 (2018)

    CAS  Google Scholar 

  61. 61.

    A.N. Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. J. Hazard. Mater. 176(1–3), 629–637 (2010)

    CAS  Google Scholar 

  62. 62.

    Z. Sabouri et al., Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. (2019). https://doi.org/10.1007/s12598-019-01333-z

    Article  Google Scholar 

  63. 63.

    M. Sadeghi et al., Decontamination of toxic chemical warfare sulfur mustard and nerve agent simulants by NiO NPs/Ag-clinoptilolite zeolite composite adsorbent. J. Environ. Chem. Eng. 4(3), 2990–3000 (2016)

    CAS  Google Scholar 

  64. 64.

    A.C. Gandhi, S.Y. Wu, Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials 7(8), 231 (2017)

    Google Scholar 

  65. 65.

    A. Barakat et al., One step synthesis of NiO nanoparticles via solid-state thermal decomposition at low-temperature of novel aqua (2,9-dimethyl-1,10-phenanthroline) NiCl2 complex. Int. J. Mol. Sci. 14(12), 23941–23954 (2013)

    Google Scholar 

  66. 66.

    S.A. Speakman, Estimating crystallite size using XRD.

  67. 67.

    A.K. Zak et al., X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Google Scholar 

  68. 68.

    S. Agrawal, A. Parveen, A. Azam, Microwave assisted synthesis of Co doped NiO nanoparticles and its fluorescence properties. J. Lumin. 184, 250–255 (2017)

    CAS  Google Scholar 

  69. 69.

    J. Al Boukhari, A. Khalaf, R. Awad, Structural and electrical investigations of pure and rare earth (Er and Pr)-doped NiO nanoparticles. Appl. Phys. A 126(1), 74 (2020)

    CAS  Google Scholar 

  70. 70.

    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    CAS  Google Scholar 

  71. 71.

    M.R. Kalaie et al., Preparation and characterization of superparamagnetic nickel oxide particles by chemical route. Appl. Nanosci. 6(6), 789–795 (2016)

    CAS  Google Scholar 

  72. 72.

    R.K. Sharma, R. Ghose, Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method. Superlattices Microstruct. 80, 169–180 (2015)

    CAS  Google Scholar 

  73. 73.

    C.R. Kumar et al., Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. J. Sci.: Adv. Mater. Devices (2020). https://doi.org/10.1016/j.jsamd.2020.02.002

    Article  Google Scholar 

  74. 74.

    C.R. Kumar et al., One-pot green synthesis of ZnO–CuO nanocomposite and their enhanced photocatalytic and antibacterial activity. Adv. Nat. Sci.: Nanosci. Nanotechnol. 11(1), 015009 (2020)

    Google Scholar 

  75. 75.

    H. Hu et al., Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater. Lett. 224, 75–77 (2018)

    CAS  Google Scholar 

  76. 76.

    C. Dong et al., Synthesis and photocatalytic degradation of methylene blue over pn junction Co3O4/ZnO core/shell nanorods. Mater. Chem. Phys. 155, 1–8 (2015)

    CAS  Google Scholar 

  77. 77.

    Q. Riaz et al., NiO nanoparticles for enhanced removal of methyl orange: equilibrium kinetics, thermodynamic and desorption studies. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1715383

    Article  Google Scholar 

  78. 78.

    S. Francis et al., Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artif. Cells Nanomed. Biotechnol. 46(4), 795–804 (2018)

    CAS  Google Scholar 

  79. 79.

    S.M. Sajadi et al., Biosynthesis of reusable and recyclable CuO@ Magnetite@ Hen Bone NCs and its antioxidant and antibacterial activities: a highly stable magnetically nanocatalyst for excellent reduction of organic dyes and adsorption of polycyclic aromatic hydrocarbons. IET Nanobiotechnol. 13, 124–133 (2018)

    Google Scholar 

  80. 80.

    N. Gupta, H.P. Singh, R.K. Sharma, Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J. Mol. Catal. A: Chem. 335(1–2), 248–252 (2011)

    CAS  Google Scholar 

  81. 81.

    S. El-Gamal, M. Amin, M. Ahmed, Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. J. Environ. Chem. Eng. 3(3), 1702–1712 (2015)

    CAS  Google Scholar 

  82. 82.

    P.S. Nayak et al., Gold nanoparticles deposited on MnO2 nanorods modified graphene oxide composite: a potential ternary nanocatalyst for efficient synthesis of betti bases and bisamides. Mol. Catal. 474, 110415 (2019)

    CAS  Google Scholar 

  83. 83.

    S.M. Sajadi et al., Green synthesis of highly recyclable CuO/eggshell nanocomposite to efficient removal of aromatic containing compounds and reduction of 4-nitrophenol at room temperature. Surf. Interfaces 13, 205–215 (2018)

    CAS  Google Scholar 

  84. 84.

    S.M. Sajadi et al., Natural iron ore as a novel substrate for the biosynthesis of bioactive-stable ZnO@ CuO@ iron ore NCs: a magnetically recyclable and reusable superior nanocatalyst for the degradation of organic dyes, reduction of Cr (vi) and adsorption of crude oil aromatic compounds, including PAHs. RSC Adv. 8(62), 35557–35570 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SISAF-Drug Delivery Nanotechnology, Ulster University, Belfast, UK, Soran research center, in Iraqi Kurdistan Region, for providing all of the facilities to perform the research work. In addition, the authors thank Tishk International University, Kurdistan Region Iraq, for their unconditional support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Azeez A. Barzinjy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barzinjy, A.A., Hamad, S.M., Aydın, S. et al. Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J Mater Sci: Mater Electron 31, 11303–11316 (2020). https://doi.org/10.1007/s10854-020-03679-y

Download citation