Structural and size dependence magnetic properties of Mn-doped NiO nanoparticles prepared by wet chemical method

Abstract

Ni1−xMnxO (x = 0.0–0.10) nanoparticles [NPs] were successfully prepared by wet chemical precipitation method at room temperature using polyethylene glycol as a capping agent. The structural, optical, microstructure, and magnetic properties of the prepared NPs were determined by XRD, FTIR, UV.PL SEM, TEM, EDS, and VSM analysis. XRD analysis confirmed the distorting of Mn2+ ions in the NiO lattice with FCC structure. The average crystalline size of undoped and Mn2+ NiO was found to decrease from 39 to 21 nm. Microstructure result shows that the prepared nanoparticles are polycrystalline in nature and the shape of the particles was hexagonal. Optical analysis shows the increase in bandgap from 3.81 to 4.27 eV by strong quantum confinement effect with blue shift in the UV absorption spectra range of 325–290 nm. EDS analysis confirmed that the samples are composed of Ni, Mn, and O without other impurities. FTIR spectra confirmed the formation of Ni–Mn–O stretching frequency. The VSM result suggests that the highest coercivity of about 620 Oe and Mn–Mn super-exchange interaction is responsible for the room-temperature ferromagnetism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S. Thota, J. Kumar, Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles. J. Phys. Chem. Solids 68, 1951–1964 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    R. Master et al., Zn doping induced ferromagnetism in NiO. J. Phys. 534, 012025 (2014)

    Google Scholar 

  3. 3.

    M.P. Proenca, C. Sousa, A. Pereira, P.B. Tavares, J. Ventura, M. Vazquez, J. Araujo, Size and surface effects on the magnetic properties of NiO nanoparticles. Phys. Chem. Chem. Phys. 13, 9561–9567 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    B.I. Nandapure, S.B. Kondawar, A.I. Nandapure (2014) Structural characterization of NiO nanoparticles and its bio-applications. Int. J. Res. Biosci. Agric. Technol. 2437–2517

  5. 5.

    V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, Correlation of crystalline and magnetic structures of barium ferrites with dual ferroics properties. J. Magn. Magn. Mater. 477, 9–16 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloys Compd. 791, 522–529 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    M.A. Almessiere, A.V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V.A. Turchenko, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, L.V. Panina, A. Baykal, Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe22x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. Ceram. In tin Press (2020)

  8. 8.

    M.A. Almessiere, Y. Slimani, H. Güngüneş, V.G. Kostishyn, S.V. Trukhanov, A.V. Trukhanov, A. Baykal, Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni-Cu-Zn spinel ferrites. Ceram. Int in press (2020)

  9. 9.

    K. Dukenbayev, I.V. Korolkov, D.I. Tishkevich, A.L. Kozlovskiy, S.V. Trukhanov, Y.G. Gorin, E.E. Shumskaya, E.Y. Kaniukov, D.A. Vinnik, M.V. Zdorovets, M. Anisovich, A.V. Trukhanov, D. Tosi, C. Molardi, Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials-Basel 9, 494 (2019)

    CAS  Article  Google Scholar 

  10. 10.

    D.I. Tishkevich, I.V. Korolkov, A.L. Kozlovskiy, M. Anisovich, D.A. Vinnik, A.E. Ermekova, A.I. Vorobjova, E.E. Shumskaya, T.I. Zubar, S.V. Trukhanov, M.V. Zdorovets, A.V. Trukhanov, Immobilization of boron-rich compound on Fe3O4 nanoparticles: Stability and cytotoxicity. J. Alloys Compd. 797, 573–581 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    M.A. Almessiere, Y. Slimani, H. Güngüne¸ A. Bayka, S.V. Trukhanov, A.V. Trukhanov (2019) Manganese/Yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and Mössbauer spectra. Nanomaterials-Basel 9–24

  12. 12.

    M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials-Basel 9, 202 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Kobayashi, J. Ishida, I. Hwang, T. Mizokawa, A. Fujimori, K. Mamiya, J. Okamoto, Y. Takeda, T. Okane, Y. Saitoh, Y. Muramatsu, A. Tanaka, H. Saeki, H. Tabata, T. Kawai, Characterization of Magnetic Components in the Diluted Magnetic Semiconductor Zn1−xCoxO by X-ray Magnetic Circular Dichroism. Phys. Rev. B 72, 201201 (2005)

    Article  Google Scholar 

  14. 14.

    A. Kurokawa, N. Sakai, L. Zhu, H. Takeuchi, S. Yano, T. Yanoh, K. Onuma, T. Kondo, K. Miike, T. Miyasaka, Y. Ichiyanagi, Magnetic properties of Fe-doped NiO nanoparticles. J. Korean Phys. Soc. 63, 716 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    S. Layek, H.C. Verma, Room temperature ferromagnetism in Mn-doped NiO nanoparticles. J. Magn. Magn. Mater. 397, 73–78 (2016)

    CAS  Article  Google Scholar 

  16. 16.

    D. Hong, W. Yan, Q. Liu, T. Yao, Z. Sun, S. Wei, Structures and magnetic properties of Mn-doped NiO thin films. J. Phys. D Applied Phys. 47, 295001 (2014)

    Article  Google Scholar 

  17. 17.

    K. Anandan, V. Rajendran, Effects of Mn on the magnetic and optical properties and photocatalytic activities of NiO nanoparticles synthesized via the simple precipitation process. Mat. Sci. Eng. B Solid 199, 48 (2015) 

    CAS  Article  Google Scholar 

  18. 18.

    S. Sankar, S.K. Sharma, N. An, H. Lee, D.Y. Kim, Y.B. Im, Y.D. Cho, R.S. Ganesh, S. Ponnusamy, P. Raji, L.P. Purohit, Photocatalytic properties of Mn-doped NiO spherical nanoparticles synthesized from sol-gel method.  Int. J. Light Electron. Optics 127(22), 10727–10734 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    P. Mallick, C. Rath, A. Rath, A. Banerjee, N.C. Mishra, Antiferro to superparamagnetic transition on Mn doping in NiO. Solid State Commun. 150, 1342–1345 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolframL'elargissement des raies de rayons x obtenues des limailles d'aluminium et de tungsteneDie verbreiterung der roentgeninterferenzlinien von aluminium- und wolframspaenen. Acta Metall. 1, 22–31 (1953)

    CAS  Article  Google Scholar 

  21. 21.

    D.V. Pinjari, A.B. Pandit, Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrasonic Sonochem.  18, 1118–1123 (2011)

    CAS  Article  Google Scholar 

  22. 22.

    J. Li, F. Luo, Q. Zhao, Z. Li, H. Yuanb, D. Xiao, Coprecipitation fabrication and electrochemical performances of coral-like mesoporous NiO nanobars. J. Mater. Chem. A 2, 4690–4697 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    S.V. Trukhanov, Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3-γ (0 ≤ γ ≤ 0.25). JETP 100, 95–105 (2005)

    CAS  Article  Google Scholar 

  24. 24.

    S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil'ev, A. Maignan, H. Szymczak, Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETPLett. 83, 33–36 (2006)

    CAS  Google Scholar 

  25. 25.

    H. Qiao, Z. Wei, H. Yang, L. Zhu, X. Yan, Preparation and Characterization of NiO Nanoparticles by Anodic Arc Plasma Method. J. Nanomater. 2009, 795928 (2009)

    Article  Google Scholar 

  26. 26.

    A.D. Khalaji, D. Das, Synthesis and characterizations of NiO nanoparticles via solid-state thermal decomposition of nickel(II) Schiff base complexes. Int. Nano Lett. 4, 117 (2014)

    Article  Google Scholar 

  27. 27.

    M. Mahaleh, S.K. Sadrnezhaad, D. Hosseini, NiO Nanoparticles Synthesis by Chemical Precipitation and Effect of Applied Surfactant on Distribution of Particle Size. J. Nanomater. 2008, 470595 (2008)

    Google Scholar 

  28. 28.

    Y. Li, B.C. Zhang, X.W. Xie, J.L. Liu, Y.D. Xu, W.J. Shen, Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers. J. Catal. 238, 412–424 (2006)

    CAS  Article  Google Scholar 

  29. 29.

    K. Lord, T.M. Williams, D. Hunter, K. Zhang, J. Dadson, Effects of As and Mn doping on microstructure and electrical conduction in ZnO films. Appl. Phys. Lett. 88, 262105 (2006)

    Article  Google Scholar 

  30. 30.

    X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141–3147 (2004)

    CAS  Article  Google Scholar 

  31. 31.

    K. Vanheusden, C. Seager, W. Warren, D. Tallant, J. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. 68, 403–405 (1996)

    CAS  Article  Google Scholar 

  32. 32.

    S.V. Trukhanov, L.S. Lobanovski, M.V. Bushinsky, V.V. Fedotova, I.O. Troyanchuk, A.V. Trukhanov, V.A. Ryzhov, H. Szymczak, R. Szymczak, M. Baran, “Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions”, J. Phys.: Condens. Matter 17 , 6495–6506.(2005)

  33. 33.

    S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, Phase separation and size effects in Pr0.70Ba0.30MnO3+δ perovskite manganites. J. Phys. 19, 266214–266218 (2007)

    CAS  Google Scholar 

  34. 34.

    I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, Magnetic properties of anion deficit manganites Ln0.55Ba0.45MnO3-γ (Ln=La, Nd, Sm, Gd, γ⩽0.37). J. Magn. Magn. Mater. 208, 217–220 (2000)

    CAS  Article  Google Scholar 

  35. 35.

    S.V. Trukhanov, A.V. Trukhanov, A.N. Vasil'ev, A. Maignan, H. Szymczak, Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region. JETP Lett. 85, 507–512 (2007)

    CAS  Article  Google Scholar 

  36. 36.

    E. Cazzanelli, A. Kuzmin, N.M. Ulmane, G. Mariotto, Behavior of one-magnet frequency in antiferromagnetic NicMg1−cO solid solutions. Phys. Rev. B 71, 134415 (2005)

    Article  Google Scholar 

  37. 37.

    Y.H.Z. Lin, B. An, C.W. Nan, R. Zhao, X. Xu, M. Kobayashi, Ferromagnetism in antiferromagnetic NiO-based thin films. J. Appl. Phys. 110, 043921–43924 (2011)

    Article  Google Scholar 

  38. 38.

    Y. Hou, Z. Xu, S.S. Angew, Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Chem. Int. Ed. 46, 6329–6332 (2007)

    CAS  Article  Google Scholar 

  39. 39.

    A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, A.Y. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. J. Alloys Compd. 788, 1193–1202 (2019)

    CAS  Article  Google Scholar 

  40. 40.

    A.V. Trukhanov, K.A. Astapovich, M.A. Almessiere, V.A. Turchenko, E.L. Trukhanova, V.V. Korovushkin, A.A. Amirov, M.A. Darwish, D.V. Karpinsky, D.A. Vinnik, D.S. Klygach, M.G. Vakhitov, M.V. Zdorovets, A.L. Kozlovskiy, S.V. Trukhanov, Pecularities of the magnetic structure and microwave properties in Ba(Fe1-xScx)12O19 (x%3c0.1) hexaferrites. J. Alloys Compd. 822, 153575 (2020)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Thangamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thangamani, C., Vijaya Kumar, P., Gurushankar, K. et al. Structural and size dependence magnetic properties of Mn-doped NiO nanoparticles prepared by wet chemical method. J Mater Sci: Mater Electron 31, 11101–11112 (2020). https://doi.org/10.1007/s10854-020-03659-2

Download citation