Preparation and electrochemical performance of ball milling SiOx/(Cu,Ni) anode materials for lithium–silicon batteries


In order to alleviate volume changes of silicon monoxide during lithium insertion and improve its electrical conductivity, ball milling(bm)-SiOx/(Cu,Ni) lithium-ion battery anode materials are successfully prepared by depositing copper and nickel on the surface of silicon nanoclusters of silicon monoxide by electroless plating. The composition and morphological characteristics of the prepared materials are characterized by XRD, XRF, XPS, TEM, and EDS, and the electrochemical performance behavior of the materials are investigated by electrochemical tests. The results show that when the particle size of SiOx is reduced from 1.7 μm to less than 200 nm by ball milling, its initial specific capacity and reversible specific capacity can be significantly improved. The deposited Cu/Ni contents of bm-SiOx/(Cu,Ni) can be controlled by adjusting the concentration of Cu2+/Ni2+ in the plating solution. Both bm-SiOx/Cu and bm-SiOx/Ni can improve the initial discharge specific capacity, cycling stability, and rate performance. Bm-SiOx/Cu with a Cu content of 4.76% and bm-SiOx/Ni with a Ni content of 4.29% have the best electrochemical performance. Compared with bm-SiOx/Cu (4.76%), bm-SiOx/Ni (4.29%) has better electrochemical performance; at 0.1C rate, its initial discharge specific capacity can be achieved 2199 mAh/g. After 50 cycles, its reversible specific capacity is 1339 mAh/g.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    M.R. Palacin, Chem. Soc. Rev. 38, 2565–2575 (2009)

    CAS  Google Scholar 

  2. 2.

    J.S. Sander, R.M. Erb, L. Li, A. Gurijala, Y.M. Chiang, Nat. Energy. 1, 16099 (2016)

    CAS  Google Scholar 

  3. 3.

    X. Su, Q.L. Wu, J.C. Li, X.C. Xiao, A. Lott, W.Q. Lu, B.W. Sheldon, J. Wu, Adv. Energy Mater. 4, 1300882 (2014)

    Google Scholar 

  4. 4.

    X.Y. Liu, M. Yang, X.J. Zhu, H.N. Yang, K. Zhou, D. Pan, J. Mater. Sci. Mater. Electron. 29, 6098–6104 (2018)

    CAS  Google Scholar 

  5. 5.

    S. Choi, T. Kwon, A. Coskun, J.W. Choi, Science 357, 279–283 (2017)

    CAS  Google Scholar 

  6. 6.

    J. Liu, Y. Wang, Y.H. Zhang, K. Huang, X. Qi, J.X. Zhong, J. Mater. Sci. Mater. Electron. 27, 12813–12819 (2016)

    Google Scholar 

  7. 7.

    Y. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, J. Electrochem. Soc. 157, 26–30 (2010)

    Google Scholar 

  8. 8.

    T. Kim, S. Park, S.M. Oh, J. Electrochem. Soc. 154, 1112–1117 (2007)

    Google Scholar 

  9. 9.

    C.M. Park, W. Choi, Y. Hwa, J.H. Kim, G. Jeong, H.J. Sohn, J. Mater. Chem. 20, 4854–4860 (2010)

    CAS  Google Scholar 

  10. 10.

    Z.H. Liu, Q. Yu, Y.L. Zhao, R.H. He, M. Xu, S.H. Feng, S.D. Li, L. Zhou, L.Q. Mai, Chem. Soc. Rev. 48, 285–309 (2019)

    CAS  Google Scholar 

  11. 11.

    J.H. Kim, H.J. Sohn, H. Kim, G. Jeong, W. Choi, J. Power Sources 170, 456–459 (2007)

    CAS  Google Scholar 

  12. 12.

    H.J. Kim, S. Choi, S.J. Lee, M.W. Seo, J.G. Lee, E. Deniz, Y.J. Lee, E.K. Kim, J.W. Choi, Nano Lett. 16, 282–288 (2016)

    CAS  Google Scholar 

  13. 13.

    J.H. Kim, C.M. Park, H. Kim, Y.J. Kim, H.J. Sohn, J. Electroanal. Chem. 661, 245–249 (2011)

    CAS  Google Scholar 

  14. 14.

    T. Chen, J. Wu, Q.L. Zhang, X. Su, J. Power Sources 363, 126–144 (2017)

    CAS  Google Scholar 

  15. 15.

    T. Huang, Y.X. Yang, K.C. Pu, J.X. Zhang, M.X. Gao, H.G. Pan, Y.F. Liu, RSC Adv. 7, 2273–2280 (2017)

    CAS  Google Scholar 

  16. 16.

    K.W. Lim, J.I. Lee, J. Yang, Y.K. Kim, H.Y. Jeong, S. Park, H.S. Shin, ACS Appl. Mater. Interfaces 6, 6340–6345 (2014)

    CAS  Google Scholar 

  17. 17.

    Y.S. Hu, R. Demir-Cakan, M.M. Titirici, J.O. Muller, R. Schlogl, M. Antonietti, J. Maier, Angew. Chem. Int. Ed. 47, 1645–1649 (2008)

    CAS  Google Scholar 

  18. 18.

    M. Miyachi, H. Yamamoto, H. Kawai, J. Electrochem. Soc. 154, 376–380 (2007)

    Google Scholar 

  19. 19.

    Y.C. Liu, J.Y. Huang, X.Q. Zhang, J.W. Wu, A. Baker, H.Y. Zhang, S. Chang, X.H. Zhang, J. Alloys Compd. 749, 236–243 (2018)

    CAS  Google Scholar 

  20. 20.

    H. Liu, Y. Zou, L. Huang, H. Yin, C.Q. Xi, X. Chen, H.W. Shentu, C. Li, J.J. Zhang, C.J. Lv, Appl. Surf. Sci. 442, 204–212 (2018)

    CAS  Google Scholar 

  21. 21.

    F. Song, X.L. Yang, S.Z. Zhang, L.L. Zhang, Z.Y. Wen, Ceram. Int. 44, 18509–18515 (2018)

    CAS  Google Scholar 

  22. 22.

    L. Shi, C. Pang, S. Chen, M.Z. Wang, K.X. Wang, Z.J. Tan, P. Gao, J.G. Ren, Y.Y. Huang, H.L. Peng, Z.F. Liu, Nano Lett. 17, 3681–3687 (2017)

    CAS  Google Scholar 

  23. 23.

    R.S. Fu, Y.K. Wu, C.Z. Fan, Z.X. Long, G.J. Shao, Z.P. Liu, Chemsuschem 14, 3377–3382 (2019)

    Google Scholar 

  24. 24.

    A. Hohl, T. Wieder, P.A. Aken, T.E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, H. Fuess, J. Non-Cryst. Solids. 320, 255–280 (2003)

    CAS  Google Scholar 

  25. 25.

    A. Hirata, S. Kohara, T. Asada, M. Arao, C. Yogi, H. Imai, Y.W. Tan, T. Fujita, M.W. Chen, Nat. Commun. 7, 11591 (2016)

    CAS  Google Scholar 

  26. 26.

    P. Gorostiza, M.A. Kulandainathan, R. Diaz, F. Sanz, P. Allongue, J.R. Morante, J. Electrochem. Soc. 147, 1026–1030 (2000)

    CAS  Google Scholar 

  27. 27.

    L. Magagnin, R. Maboudian, C. Carraro, J. Phys. Chem. B 106, 401–407 (2002)

    CAS  Google Scholar 

  28. 28.

    A.A. Ensafi, M.M. Abarghoui, B. Rezaei, J. Alloys Compd. 712, 233–240 (2017)

    CAS  Google Scholar 

  29. 29.

    H. Morinaga, M. Suyama, T. Ohmi, J. Electrochem. Soc. 141, 2834–2841 (1994)

    CAS  Google Scholar 

  30. 30.

    D. Dastan, Appl. Phys. A 123, 1–13 (2017)

    CAS  Google Scholar 

  31. 31.

    A. Jafari, M.H. Alam, D. Dastan, S. Ziakhodadadian, Z.C. Shi, H. Garmestani, S. Talu, J. Mater. Sci. Mater. Electron. 24, 21185–21198 (2019)

    Google Scholar 

  32. 32.

    D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109–114 (2015)

    Google Scholar 

  33. 33.

    D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. Mater. Electron. 27, 12291–12296 (2015)

    Google Scholar 

  34. 34.

    H. Zuo, W.B. Fu, R.H. Fan, X. Wang, D. Dastan, H.L. Wang, Z.C. Shi, Mater. Lett. 5, 263 (2020)

    Google Scholar 

  35. 35.

    X.X. Li, H.B. Shi, L.Q. Zhang, J.B. Chen, P.P. Lv, Chin. J. Chem. Eng. 7, 1088 (2019)

    Google Scholar 

  36. 36.

    B.C. Yu, Y. Hwa, C.M. Park, H.J. Sohn, J. Mater. Chem. A 1, 4820–4825 (2013)

    CAS  Google Scholar 

  37. 37.

    X.H. Liu, F. Fan, H. Yang, S.L. Zhang, J.Y. Huang, T. Zhu, ACS Nano 7, 1495–1503 (2013)

    CAS  Google Scholar 

  38. 38.

    T. Xu, J. Zhang, C.Y. Yang, H.B. Luo, B.J. Xia, X.H. Xie, J. Alloys Compd. 738, 323–330 (2018)

    CAS  Google Scholar 

  39. 39.

    M.Y. Ge, Y.H. Lu, P. Ercius, J.P. Rong, X. Fang, M. Mecklenburg, C.W. Zhou, Nano Lett. 14, 261–268 (2014)

    CAS  Google Scholar 

  40. 40.

    J. Yang, X.T. Zhu, H.L. Wang, X. Wang, C.C. Hao, R.H. Fan, D. Dastan, Z.C. Shi, Composites A 131, 105814 (2020)

    CAS  Google Scholar 

  41. 41.

    X.T. Zhu, J. Yang, D. Dastan, H. Garmestani, R.H. Fan, Z.C. Shi, Composites A 125, 105521 (2019)

    Google Scholar 

Download references


This work was supported by Jiangsu University Advantage Discipline Construction Project (Jiangsu Gov. Office issued 2018-10) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information



Corresponding author

Correspondence to Fangxia Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., Zhao, F., Yang, B. et al. Preparation and electrochemical performance of ball milling SiOx/(Cu,Ni) anode materials for lithium–silicon batteries. J Mater Sci: Mater Electron 31, 11049–11058 (2020).

Download citation