Graphene oxide/Cu junction as relative humidity sensor

Abstract

The paper investigates the electrical properties of the junction between the graphene oxide (GO) and some metals (Cu and Au). A simple humidity sensor, based on the adsorption of water molecules on the GO/surface in a GO/Cu junction, is described. The GO was drop-casted as a thin film, 10 μm in thickness, on the metallic substrate. The junction open-circuit voltage and short-circuit current behaviours versus the humidity level can be explained on the base of the charge carrier drift. The room temperature response of the GO/Cu water vapour detector, in terms of relative humidity in air, is compared against a well-known commercial hygrometer. The proposed device does not require external polarization, and it is inexpensive and easy to use.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    A.T. Dideikin, A.Y. Vul', Graphene oxide and derivatives: the place in graphene family. Front. Phys. 6(149), 1 (2019)

    Google Scholar 

  2. 2.

    L. Torrisi, L. Silipigni, M. Cutroneo, A. Torrisi, Graphene oxide as a radiation sensitive material for XPS dosimetry. Vacuum 173, 109175 (2020)

    CAS  Article  Google Scholar 

  3. 3.

    M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni, Science Handbook, Mechanical and Chemical Properties (CRC Press Taylor & Francis Group, Boca Raton, 2016)

    Google Scholar 

  4. 4.

    H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity ofgraphene oxide. Sci. Rep. 3(2714), 1 (2013)

    Google Scholar 

  5. 5.

    M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni, Science Handbook, Electrical and optical Properties (CRC Press Taylor & Francis Group, Boca Raton, 2016)

    Google Scholar 

  6. 6.

    L. Silipigni, G. Salvato, G. Di Marco, B. Fazio, A. Torrisi, M. Cutroneo, L. Torrisi, Band-like transport in high vacuum thermal reduced graphene oxide films. Vacuum 165, 254 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    M. Chen, F. Soyekwo, Q. Zhang, C. Hu, A. Zhu, Q. Liu, Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J. Ind. Eng. Chem 63, 296 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    L. Silipigni, G. Salvato, B. Fazio, G. Di Marco, E. Proverbio, M. Cutroneo, A. Torrisi, L. Torrisi, Temperature sensor based on IR-laser reduced graphene oxide. JINST 15(04), C04006 (2020)

    Article  Google Scholar 

  9. 9.

    H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, L. Sun, Graphene-based sensors for human health monitoring. Front. Chem. 7(399), 1 (2019)

    Google Scholar 

  10. 10.

    Y. Yao, X. Chen, H. Guo, Z. Wu, X. Li, Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure. Sens. Actuators B 161, 1053 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    L. Torrisi, L. Silipigni, M. Cutroneo, Radiation effects of IR laser on graphene oxide irradiated in vacuum and in air. Vacuum 153, 122 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    L. Torrisi, M. Cutroneo, A. Torrisi, G. Salvato, E. Proverbioand, L. Silipigni, Reduction of graphene oxide foils by IR laser irradiation in air. JINST 15(1), C03006 (2020)

    Article  Google Scholar 

  14. 14.

    T. Cusati, G. Fiori, A. Gahoi, V. Passi, M.C. Lemme, A. Fortunelli, G. Iannaccone, Electrical properties of graphene-metal contacts. Sci. Rep. 7(5109), 1 (2017)

    CAS  Google Scholar 

  15. 15.

    S. Gupta, J. Narayan, Reduced graphene oxide/amorphous carbon P−N junctions: nanosecond laser patterning. ACS Appl. Mater. Interfaces 11, 24318 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    K. Naito, N. Yoshinaga, S. Matake, Y. Akasaka, Work-function decrease of transparent conducting films composed of hydrazine-reduced graphene oxide and silver nanowire stacked layers by electrochemical treatment. Synth. Met. 195, 260 (2014)

    CAS  Article  Google Scholar 

  17. 17.

    L. Torrisi, M. Cutroneo, A. Torrisi, L. Silipigni, V. Havranek, Small-field dosimetry based on reduced graphene oxide under MeV helium beam irradiation. Rad. Eff. Defects Solids 175(1–2), 120 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    X. Wang, Y. Zhao, E. Tian, J. Li, Y. Ren, Graphene oxide-based polymeric membranes for water treatment. Adv. Mater. Interfaces 5(15), 1 (2018)

    Article  Google Scholar 

  19. 19.

    D. Sun, Y. Luo, M. Debliquy, C. Zhang, Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J. Nanotechnol. 9, 2832 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    N. Wei, X. Peng, Z. Xu, Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6, 5877 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    D.T. Phan, G.S. Chungn, P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111). J. Phys. Chem. Solids 74, 1509 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    T.E. Timofeeva, Z.I. Evseev, P.V. Vinokurov, G.N. Alexandrov, S.A. Smagulova, The effect of temperature conditions during graphene oxide synthesis on humidity dependence of conductivity in thermally reduced graphene oxide. J. Struct. Chem. 59(4), 799 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    Q. Fatima, A.A. Haidry, Z. Yao, Y. He, Z. Li, L. Sun, L. Xie, The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 1, 1319 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456 (1955)

    Article  Google Scholar 

  25. 25.

    I.A. Kotin IV, O.M.O. Antonova, S.A. Smagulova, Origin of hole and electron traps in graphene oxide. Mater. Res. Express 3, 066301 (2016)

    Article  Google Scholar 

  26. 26.

    Graphenea, High quality Graphene producer, actual website (2020), https://www.graphenea.com/collections/graphene-oxide

  27. 27.

    L. Torrisi, M. Cutroneo, V. Havranek, L. Silipign, B. Fazio, M. Fazio, G. Di Marco, A. Stassi, A. Torrisi, Self-supporting graphene oxide films preparation and characterization methods. Vacuum 160, 1 (2019)

    CAS  Article  Google Scholar 

  28. 28.

    AM2302 Hygrometer, actual website (2020), https://www.kandrsmith.org/RJS/Misc/Hygrometers/calib_dht22.html#references

  29. 29.

    AM2302, Hygrometer, technical characteristics, actual website (2020), https://cdn-shop.adafruit.com/datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf

  30. 30.

    S. Halas, T. Durakiewicz, Work functions of elements expressed in terms of the Fermi energy and the density of free electrons. J. Phys. 10, 10815 (1998)

    CAS  Google Scholar 

  31. 31.

    L. Sygellou, G. Paterakis, C. Galiotis, D. Tasis, Work function tuning of reduced graphene oxide thin films. J. Phys. Chem. C 120(1), 281 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    J. Liu, M. Durstock, L. Dai, Graphene oxide derivatives as hole- and electron extraction layers for high-performance polymersolar cells. Energy Environ. Sci. 7, 1297 (2014)

    CAS  Article  Google Scholar 

  33. 33.

    T. Kullmann, I. Barta, B. Antus, M. Valyon, I. Horva, Environmental temperature and relative humidity influence exhaled breath condensate pH. Eur. Respir. J. 31(2), 474 (2008)

    CAS  Article  Google Scholar 

  34. 34.

    S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, Ultrafast graphene oxide humidity sensors. ACS Nano 7(12), 11166 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the INFN-CIMA project in which the research was developed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Torrisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torrisi, L., Silipigni, L. & Salvato, G. Graphene oxide/Cu junction as relative humidity sensor. J Mater Sci: Mater Electron 31, 11001–11009 (2020). https://doi.org/10.1007/s10854-020-03648-5

Download citation