Skip to main content
Log in

Graphene oxide/Cu junction as relative humidity sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper investigates the electrical properties of the junction between the graphene oxide (GO) and some metals (Cu and Au). A simple humidity sensor, based on the adsorption of water molecules on the GO/surface in a GO/Cu junction, is described. The GO was drop-casted as a thin film, 10 μm in thickness, on the metallic substrate. The junction open-circuit voltage and short-circuit current behaviours versus the humidity level can be explained on the base of the charge carrier drift. The room temperature response of the GO/Cu water vapour detector, in terms of relative humidity in air, is compared against a well-known commercial hygrometer. The proposed device does not require external polarization, and it is inexpensive and easy to use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.T. Dideikin, A.Y. Vul', Graphene oxide and derivatives: the place in graphene family. Front. Phys. 6(149), 1 (2019)

    Google Scholar 

  2. L. Torrisi, L. Silipigni, M. Cutroneo, A. Torrisi, Graphene oxide as a radiation sensitive material for XPS dosimetry. Vacuum 173, 109175 (2020)

    Article  CAS  Google Scholar 

  3. M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni, Science Handbook, Mechanical and Chemical Properties (CRC Press Taylor & Francis Group, Boca Raton, 2016)

    Book  Google Scholar 

  4. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity ofgraphene oxide. Sci. Rep. 3(2714), 1 (2013)

    Google Scholar 

  5. M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni, Science Handbook, Electrical and optical Properties (CRC Press Taylor & Francis Group, Boca Raton, 2016)

    Book  Google Scholar 

  6. L. Silipigni, G. Salvato, G. Di Marco, B. Fazio, A. Torrisi, M. Cutroneo, L. Torrisi, Band-like transport in high vacuum thermal reduced graphene oxide films. Vacuum 165, 254 (2019)

    Article  CAS  Google Scholar 

  7. M. Chen, F. Soyekwo, Q. Zhang, C. Hu, A. Zhu, Q. Liu, Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. J. Ind. Eng. Chem 63, 296 (2018)

    Article  CAS  Google Scholar 

  8. L. Silipigni, G. Salvato, B. Fazio, G. Di Marco, E. Proverbio, M. Cutroneo, A. Torrisi, L. Torrisi, Temperature sensor based on IR-laser reduced graphene oxide. JINST 15(04), C04006 (2020)

    Article  Google Scholar 

  9. H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, L. Sun, Graphene-based sensors for human health monitoring. Front. Chem. 7(399), 1 (2019)

    Google Scholar 

  10. Y. Yao, X. Chen, H. Guo, Z. Wu, X. Li, Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure. Sens. Actuators B 161, 1053 (2012)

    Article  CAS  Google Scholar 

  11. L. Torrisi, L. Silipigni, M. Cutroneo, Radiation effects of IR laser on graphene oxide irradiated in vacuum and in air. Vacuum 153, 122 (2018)

    Article  CAS  Google Scholar 

  12. C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291 (2014)

    Article  CAS  Google Scholar 

  13. L. Torrisi, M. Cutroneo, A. Torrisi, G. Salvato, E. Proverbioand, L. Silipigni, Reduction of graphene oxide foils by IR laser irradiation in air. JINST 15(1), C03006 (2020)

    Article  Google Scholar 

  14. T. Cusati, G. Fiori, A. Gahoi, V. Passi, M.C. Lemme, A. Fortunelli, G. Iannaccone, Electrical properties of graphene-metal contacts. Sci. Rep. 7(5109), 1 (2017)

    CAS  Google Scholar 

  15. S. Gupta, J. Narayan, Reduced graphene oxide/amorphous carbon P−N junctions: nanosecond laser patterning. ACS Appl. Mater. Interfaces 11, 24318 (2019)

    Article  CAS  Google Scholar 

  16. K. Naito, N. Yoshinaga, S. Matake, Y. Akasaka, Work-function decrease of transparent conducting films composed of hydrazine-reduced graphene oxide and silver nanowire stacked layers by electrochemical treatment. Synth. Met. 195, 260 (2014)

    Article  CAS  Google Scholar 

  17. L. Torrisi, M. Cutroneo, A. Torrisi, L. Silipigni, V. Havranek, Small-field dosimetry based on reduced graphene oxide under MeV helium beam irradiation. Rad. Eff. Defects Solids 175(1–2), 120 (2020)

    Article  CAS  Google Scholar 

  18. X. Wang, Y. Zhao, E. Tian, J. Li, Y. Ren, Graphene oxide-based polymeric membranes for water treatment. Adv. Mater. Interfaces 5(15), 1 (2018)

    Article  Google Scholar 

  19. D. Sun, Y. Luo, M. Debliquy, C. Zhang, Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J. Nanotechnol. 9, 2832 (2018)

    Article  CAS  Google Scholar 

  20. N. Wei, X. Peng, Z. Xu, Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6, 5877 (2014)

    Article  CAS  Google Scholar 

  21. D.T. Phan, G.S. Chungn, P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111). J. Phys. Chem. Solids 74, 1509 (2013)

    Article  CAS  Google Scholar 

  22. T.E. Timofeeva, Z.I. Evseev, P.V. Vinokurov, G.N. Alexandrov, S.A. Smagulova, The effect of temperature conditions during graphene oxide synthesis on humidity dependence of conductivity in thermally reduced graphene oxide. J. Struct. Chem. 59(4), 799 (2018)

    Article  CAS  Google Scholar 

  23. Q. Fatima, A.A. Haidry, Z. Yao, Y. He, Z. Li, L. Sun, L. Xie, The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 1, 1319 (2019)

    Article  CAS  Google Scholar 

  24. N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456 (1955)

    Article  Google Scholar 

  25. I.A. Kotin IV, O.M.O. Antonova, S.A. Smagulova, Origin of hole and electron traps in graphene oxide. Mater. Res. Express 3, 066301 (2016)

    Article  Google Scholar 

  26. Graphenea, High quality Graphene producer, actual website (2020), https://www.graphenea.com/collections/graphene-oxide

  27. L. Torrisi, M. Cutroneo, V. Havranek, L. Silipign, B. Fazio, M. Fazio, G. Di Marco, A. Stassi, A. Torrisi, Self-supporting graphene oxide films preparation and characterization methods. Vacuum 160, 1 (2019)

    Article  CAS  Google Scholar 

  28. AM2302 Hygrometer, actual website (2020), https://www.kandrsmith.org/RJS/Misc/Hygrometers/calib_dht22.html#references

  29. AM2302, Hygrometer, technical characteristics, actual website (2020), https://cdn-shop.adafruit.com/datasheets/Digital+humidity+and+temperature+sensor+AM2302.pdf

  30. S. Halas, T. Durakiewicz, Work functions of elements expressed in terms of the Fermi energy and the density of free electrons. J. Phys. 10, 10815 (1998)

    CAS  Google Scholar 

  31. L. Sygellou, G. Paterakis, C. Galiotis, D. Tasis, Work function tuning of reduced graphene oxide thin films. J. Phys. Chem. C 120(1), 281 (2016)

    Article  CAS  Google Scholar 

  32. J. Liu, M. Durstock, L. Dai, Graphene oxide derivatives as hole- and electron extraction layers for high-performance polymersolar cells. Energy Environ. Sci. 7, 1297 (2014)

    Article  CAS  Google Scholar 

  33. T. Kullmann, I. Barta, B. Antus, M. Valyon, I. Horva, Environmental temperature and relative humidity influence exhaled breath condensate pH. Eur. Respir. J. 31(2), 474 (2008)

    Article  CAS  Google Scholar 

  34. S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhanen, Ultrafast graphene oxide humidity sensors. ACS Nano 7(12), 11166 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the INFN-CIMA project in which the research was developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Torrisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrisi, L., Silipigni, L. & Salvato, G. Graphene oxide/Cu junction as relative humidity sensor. J Mater Sci: Mater Electron 31, 11001–11009 (2020). https://doi.org/10.1007/s10854-020-03648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03648-5

Navigation