Highly efficient photoelectrochemical water splitting from P-doped α-Fe2O3 nanorod/BiVO4 heterojunction array


We report the fabrication of P-doped α-Fe2O3 nanorod/BiVO4 heterojunction photoelectrode for photoelectrochemical (PEC) water splitting. The heterojunction photoelectrode is fabricated by combining methods of hydrothermal deposition, wet impregnation and metal organic decomposition. The structure and PEC activity of the photoelectrode are systemically studied. This heterojunction photoelectrode exhibits a surprising photocurrent density of 1.17 mA/cm2 at 0.8 V vs. Ag/AgCl, which is approximately 3.55 times higher than that of the pristine α-Fe2O3. The photoconversion efficiency is 9.58 times higher than α-Fe2O3 and the onset potential has an obvious negative shift of 450 mV compared to the α-Fe2O3 for the heterojunction photoelectrode. The significant enhancement of PEC water splitting performance is attributed to the heterojunction structure and the synergistic effects of P-doping, which contributes to expediting electron and hole transfer and reducing carriers recombination. This novel design may provide an efficient way to developing efficient heterojunction photoelectrodes for practical PEC application.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    D.A. Grave, N. Yatom, D.S. Ellis, M.C. Toroker, A. Rothschild, Adv. Mater. 30, 1706577 (2015)

    Google Scholar 

  2. 2.

    C. Zhen, R. Chen, L. Wang, G. Liu, H.M. Cheng, J. Mater. Chem. A 4, 2783 (2016)

    CAS  Google Scholar 

  3. 3.

    M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446 (2010)

    CAS  Google Scholar 

  4. 4.

    Y. Qiu, K. Yan, H. Deng, S. Yang, Nano Lett. 12, 407 (2012)

    CAS  Google Scholar 

  5. 5.

    Z. Kang, H.N. Si, S.C. Zhang, J. Wu, Y. Sun, Q.L. Liao, Z. Zhang, Y. Zhang, Adv. Funct. Mater. 15, 1808032 (2019)

    Google Scholar 

  6. 6.

    T.W. Kim, K.-S. Choi, Science 343, 990 (2014)

    CAS  Google Scholar 

  7. 7.

    J. Zhang, W. Luo, W. Li, X. Zhao, G. Xue, T. Yu, C. Zhang, M. Xiao, Z. Li, Z. Zou, Electrochem. Commun. 22, 49 (2012)

    Google Scholar 

  8. 8.

    D. Chandra, K. Saito, T. Yui, M. Yagi, Angew. Chem. Int. Ed. 52, 12606 (2013)

    CAS  Google Scholar 

  9. 9.

    X. Zhang, X. Lu, Y. Shen, J. Han, L. Yuan, L. Gong, Z. Xu, X. Bai, M. Wei, Y. Tong, Y. Gao, J. Chen, J. Zhou, Z.L. Wang, Chem. Commun. 47, 5804 (2011)

    CAS  Google Scholar 

  10. 10.

    X. Yu, X. Han, Z. Zhao, J. Zhang, W. Guo, C. Pan, A. Li, Z.L. Wang, Nano Energy 11, 19 (2015)

    CAS  Google Scholar 

  11. 11.

    Y. Wang, Y.Y. Zhang, J. Tang, H. Wu, M. Xu, Z. Peng, X.G. Gong, G. Zheng, ACS Nano 7, 9375 (2013)

    CAS  Google Scholar 

  12. 12.

    W. Wang, M. Tian, A. Abdulagatov, S.M. George, Y.C. Lee, R. Yang, Nano Lett. 12, 655 (2012)

    CAS  Google Scholar 

  13. 13.

    S.S. Yi, B.R. Wulan, J.M. Yan, Q. Jiang, Adv. Funct. Mater. 11, 1801902 (2019)

    Google Scholar 

  14. 14.

    Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Energy Environ. Sci. 6, 347 (2013)

    CAS  Google Scholar 

  15. 15.

    H. Dotan, K. Sivula, M. Grätzel, A. Rothschild, S.C. Warren, Energy Environ. Sci. 4, 958 (2011)

    CAS  Google Scholar 

  16. 16.

    D. Chen, Z.F. Liu, S.C. Zhang, Appl. Catal. B 265, 118580 (2020)

    Google Scholar 

  17. 17.

    Y. Lin, G. Yuan, S. Sheehan, S. Zhou, D. Wang, Energy Environ. Sci. 4, 4862 (2011)

    CAS  Google Scholar 

  18. 18.

    G. Wang, Y. Ling, D.A. Wheeler, K.E.N. George, Nano Lett. 11, 3503 (2011)

    CAS  Google Scholar 

  19. 19.

    R. Schrebler, L.A. Ballesteros, H. Gómez, P. Grez, R. Córdova, E.M. Noz, R. Schrebler, J.R. Ramos-Barrado, E.A. Dalchiele, J. Electrochem. Soc. 161, 903 (2014)

    Google Scholar 

  20. 20.

    S. Gideon, D. Hen, M.K. Deo, K. Asaf, M.T. Mayer, G. Michael, R. Avner, Adv. Energy Mater. 6, 1500817 (2016)

    Google Scholar 

  21. 21.

    J.W. Jang, C. Du, Y. Ye, Y. Lin, X. Yao, J. Thorne, E. Liu, G. McMahon, J. Zhu, A. Javey, J. Guo, D. Wang, Nat. Commun. 6, 7447 (2015)

    Google Scholar 

  22. 22.

    J. Xu, X. Yang, H.K. Wang, X. Chen, C.Y. Luan, Z.X. Xu, Z.Z. Lu, V.A.L. Roy, W.J. Zhang, C.S. Lee, Nano Lett. 11, 4138 (2011)

    CAS  Google Scholar 

  23. 23.

    Y. Lin, Y. Xu, M.T. Mayer, Z.I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 134, 5508 (2012)

    CAS  Google Scholar 

  24. 24.

    K. Sivula, F.L. Formal, M. Grätzel, Chem. Mater. 21, 2862 (2009)

    CAS  Google Scholar 

  25. 25.

    S.L. Bai, H.M. Chu, X. Xiang, R.X. Luo, J. He, A.F. Chen, Chem. Eng. J. 350, 148 (2018)

    CAS  Google Scholar 

  26. 26.

    D. Sharma, S. Upadhyay, A. Verma, V.R. Satsangi, R. Shrivastav, S. Dassa, Thin Solid Films 574, 125 (2015)

    CAS  Google Scholar 

  27. 27.

    C. Chen, H.Y. Bai, Z.L. Da, M. Li, X. Yan, J.H. Jiang, W.Q. Fan, W.D. Shi, Adv. Funct. Mater. 8, 1550058 (2015)

    CAS  Google Scholar 

  28. 28.

    Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, Nano Lett. 12, 6464 (2012)

    CAS  Google Scholar 

  29. 29.

    Y. Liang, Y. Yu, Y. Huang, Y. Shi, B. Zhang, J. Mater. Chem. A 5, 13336 (2017)

    CAS  Google Scholar 

  30. 30.

    D. Chen, Z.F. Liu, ChemSusChem 11, 3438 (2018)

    CAS  Google Scholar 

  31. 31.

    D. Chen, Z.F. Liu, Z.G. Guo, M.N. Ruan, W.G. Yan, ChemSusChem 12, 3286 (2019)

    CAS  Google Scholar 

  32. 32.

    Y. Hou, F. Zuo, A. Dagg, P. Feng, Angew. Chem. Int. Ed. 52, 1248 (2013)

    CAS  Google Scholar 

  33. 33.

    O. Zandi, B.M. Klahr, T.W. Hamann, Energy Environ. Sci. 6, 634 (2013)

    CAS  Google Scholar 

  34. 34.

    S. Gurudayal, S.Y. Chiam, M.H. Kumar, P.S. Bassi, H.L. Seng, J. Barber, L.H. Wong, ACS Appl. Mater. Interfaces 6, 5852 (2014)

    CAS  Google Scholar 

  35. 35.

    X. Qi, G. She, M. Wang, L. Mu, W. Shi, Chem. Commun. 49, 5742 (2013)

    CAS  Google Scholar 

  36. 36.

    Y.-S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J.-N. Park, E.W. McFarland, Chem. Mater. 20, 3803 (2008)

    CAS  Google Scholar 

  37. 37.

    P. Dias, T. Lopes, L. Andrade, A.J. Mendes, J. Power Sources 272, 567 (2014)

    CAS  Google Scholar 

  38. 38.

    Z. Luo, C. Li, S. Liu, T. Wang, J. Gong, Chem. Sci. 8, 91 (2017)

    CAS  Google Scholar 

  39. 39.

    J. Deng, X. Lv, K. Nie, X. Lv, X. Sun, J. Zhong, ACS Catal. 7, 4062 (2017)

    CAS  Google Scholar 

  40. 40.

    F. Li, J. Li, J. Zhang, L.L. Gao, X.F. Long, Y.P. Hu, S.W. Li, J. Jin, J.T. Ma, ChemSusChem 11, 2156 (2018)

    CAS  Google Scholar 

  41. 41.

    Q. Rui, L. Wang, Y.J. Zhang, C.C. Feng, B.B. Zhang, S.R. Fu, H.L. Guo, H.Y. Hu, Y.P. Bi, J. Mater. Chem. A 6, 7021 (2018)

    CAS  Google Scholar 

  42. 42.

    J.Z. Su, X.J. Feng, J.D. Sloppy, L.J. Guo, C.A. Grimes, Nano Lett. 11, 203 (2011)

    CAS  Google Scholar 

  43. 43.

    S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)

    CAS  Google Scholar 

  44. 44.

    N.J. Bell, Y.H. Ng, A. Du, H. Coster, S.C. Smith, R. Amal, J. Phys. Chem. C 115, 6004 (2011)

    CAS  Google Scholar 

  45. 45.

    W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, ACS Nano 8, 11770 (2014)

    CAS  Google Scholar 

Download references


This work was supported by the Program for Talent Scientific Research Fund of LSHU (No. 2015XJJ-003), Education Department of Liaoning Province Basic Research Project (No. L2017LQN029).

Author information



Corresponding author

Correspondence to Jiuyu Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, M., Wang, C., Ji, J. et al. Highly efficient photoelectrochemical water splitting from P-doped α-Fe2O3 nanorod/BiVO4 heterojunction array. J Mater Sci: Mater Electron 31, 10981–10988 (2020). https://doi.org/10.1007/s10854-020-03646-7

Download citation