Photo-induced resistive switching in CdS-sensitized TiO2 nanorod array memristive device


The emergence of an electric field controlled memristive effect paves the way for efficient resistive memory and future computing applications. The photo-induced memristive effects provide an additional degree of freedom by utilizing the photonic stimulus. Considering this strategy, the present work reports synthesis, characterization and exploration of the resistive switching (RS) effect of the CdS-sensitized TiO2 nanorod array-based memristive device. The Al/CdS-sensitized TiO2/FTO thin-film device demonstrates the Ultraviolet–Visible (UV–Vis) induced RS behavior and non-volatile memory properties. The memory device shows 103 cyclic switchings and can retain data up to 103 s. The device conduction analysis reveals that the Ohmic, Child's square law and Schottky models were well fitted to the experimental I–V data and responsible for current conduction in the Al/CdS-sensitized TiO2/FTO memory device. The results of the present work are beneficial for several applications that include light-responsive memory, synaptic and sensor devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    A. Fujishima, K. Honda, TiO2 photoelectrochemistry and photocatalysis. Nature 238(5358), 37–38 (1972)

    CAS  Article  Google Scholar 

  2. 2.

    H.M. Yadav, N.D. Thorat, M.M. Yallapu, S.A.M. Tofail, J.S. Kim, Functional TiO2 nanocoral architecture for light-activated cancer chemotherapy. J. Mater. Chem. B 5, 1461–1470 (2017)

    CAS  Article  Google Scholar 

  3. 3.

    T.S. Bhat, S.S. Mali, S.D. Korade, J.S. Shaikh, M.M. Karanjkar, C.K. Hong, J.H. Kim, P.S. Patil, Mesoporous architecture of TiO2 microspheres via controlled template assisted route and their photoelectrochemical properties. J. Mater. Sci.: Mater. Electron. 28(1), 304–316 (2017)

    CAS  Google Scholar 

  4. 4.

    J.V. Patil, S.S. Mali, J.S. Shaikh, T.S. Bhat, C.K. Hong, J.H. Kim, P.S. Patil, Hydrothermally grown 3D hierarchical TiO2 based on electrochemically anodized 1D TiO2 nanostructure for supercapacitor. Appl. Phys. A 124(9), 592 (2018)

    Article  CAS  Google Scholar 

  5. 5.

    T.S. Bhat, S.S. Mali, A.D. Sheikh, S.D. Korade, K.K. Pawar, C.K. Hong, J.H. Kim, P.S. Patil, TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route. Opt. Mater. 73, 781–792 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    T.S. Bhat, S.S. Mali, A.D. Sheikh, N.L. Tarwal, S.D. Korade, C.K. Hong, J.H. Kim, P.S. Patil, ZnS passivated PbSe sensitized TiO2 nanorod arrays to suppress photocorrosion in photoelectrochemical solar cells. Mater. Today Commun. 16, 186–193 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    B. Salonikidou, T. Yasunori, B.L. Borgne, J. England, T. Shizuo, R.A. Sporea, Toward fully printed memristive elements: a-TiO2 electronic synapse from functionalized nanoparticle ink. ACS Appl. Electron. Mater. 1(12), 2692–2700 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    S.A. Pawar, R.S. Devan, D.S. Patil, V.V. Burungale, T.S. Bhat, S.S. Mali, S.W. Shin, J.E. Ae, C.K. Hong, Y.R. Ma, J.H. Kim, Hydrothermal growth of photoelectrochemically active titanium dioxide cauliflower-like nanostructures. Electrochim. Acta 117, 470–479 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52(10), 3581–3599 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    K. Park, S.L. Jang, Flexible resistive switching memory with a Ni/CuOx/Ni structure using an electrochemical deposition process. Nanotechnology 27(12), 125203 (2016)

    Article  CAS  Google Scholar 

  11. 11.

    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    X. Hu, S. Duan, L. Wang, X. Liao, Memristive crossbar array with applications in image processing. Sci. China Inform. Sci. 55(2), 461–472 (2012)

    Article  Google Scholar 

  13. 13.

    Q. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X. Li, W.M. Tong, D.B. Strukov, G.S. Snider, Memristor—CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    CAS  Article  Google Scholar 

  14. 14.

    V.S. Dongle, A.A. Dongare, N.B. Mullani, P.S. Pawar, P.B. Patil, J. Heo, T.J. Park, T.D. Dongale, Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J. Mater. Sci.: Mater. Electron. 29(21), 18733–18741 (2018)

    CAS  Google Scholar 

  15. 15.

    M.Y. Chougale, S.R. Patil, S.P. Shinde, S.S. Khot, A.A. Patil, A.C. Khot, S.S. Chougule, C.K. Volos, S. Kim, T.D. Dongale, Memristive switching in ionic liquid–based two-terminal discrete devices. Ionics 25(11), 5575–5583 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    T. Chang, S.H. Jo, K.H. Kim, P. Sheridan, S. Gaba, W. Lu, Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    A. Kathalingam, H.S. Kim, S.D. Kim, H.C. Park, Light induced resistive switching property of solution synthesized ZnO nanorod. Opt. Mater. 48, 190–197 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    X. Guan, W. Hu, M.A. Haque, N. Wei, Z. Liu, A. Chen, T. Wu, Light responsive ion redistribution induced resistive switching in hybrid perovskite Schottky junctions. Adv. Funct. Mater. 28(3), 1704665 (2018)

    Article  CAS  Google Scholar 

  19. 19.

    H.M. Yadav, J.S. Kim, S.H. Pawar, Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J. Chem. Eng. 33(7), 1989–1998 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, L.M. Peng, CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J. Phys. Chem. C 113(18), 7531–7535 (2009)

    CAS  Article  Google Scholar 

  21. 21.

    G. Li, L. Wu, F. Li, P. Xu, D. Zhang, H. Li, Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation. Nanoscale 5(5), 2118–2125 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13(10), 4659–4667 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    T.S. Bhat, R.S. Devan, S.S. Mali, A.S. Kamble, S.A. Pawar, I.Y. Kim, Y.R. Ma, C.K. Hong, J.H. Kim, P.S. Patil, Photoelectrochemically active surfactant free single step hydrothermal mediated titanium dioxide nanorods. J. Mater. Sci.: Mater. Electron. 25(10), 4501–4511 (2014)

    CAS  Google Scholar 

  24. 24.

    S.S. Patil, N.L. Tarwal, H.M. Yadav, S.D. Korade, T.S. Bhat, A.M. Teli, M.M. Karanjkar, J.H. Kim, P.S. Patil, Photoelectrochemical performance of dye and semiconductor sensitization on 1-D hollow hexagonal ZnO rods: a comparative study. J. Solid State Electrochem. 22(10), 3015–3024 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    M. Shalom, S. Dor, S. Ruhle, L. Grinis, A. Zaban, Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C 113(9), 3895–3898 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing, Boston, 1956)

    Google Scholar 

  27. 27.

    G.M. Lohar, S.K. Shinde, M.C. Rath, V.J. Fulari, Structural, optical, photoluminescence, electrochemical, and photoelectrochemical properties of Fe doped ZnSe hexagonal nanorods. Mater. Sci. Semicond. Process. 26, 548–554 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    I. Gonzalez-Valls, M. Lira-Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ. Sci. 2(1), 19–34 (2009)

    CAS  Article  Google Scholar 

  29. 29.

    Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Aggregation of ZnO nanocrystallites for high conversion efficiency in dye sensitized solar cells. Angew. Chem. Int. Ed. 47(13), 2402–2406 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    S. Tsunekawa, T. Fukuda, A. Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles. J. Appl. Phys. 87(3), 1318–1321 (2000)

    CAS  Article  Google Scholar 

  31. 31.

    P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 137, 174–187 (2018)

    CAS  Article  Google Scholar 

  32. 32.

    P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Rutile phase n-and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 51(37), 7816–7819 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    S.S. Mali, S.K. Desai, D.S. Dalavi, C.A. Betty, P.N. Bhosale, P.S. Patil, CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application. Photochem. Photobiol. Sci. 10(10), 1652–1658 (2011)

    CAS  Article  Google Scholar 

  34. 34.

    L. Chua, Memristor-the missing circuit element. IEEE Trans. Cir. Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  35. 35.

    G.I. Taylor, The mechanism of plastic deformation of crystals. Part I—Theoretical. Proc. R. Soc. Lond. Ser. A 145(855), 362–387 (1934)

    CAS  Article  Google Scholar 

  36. 36.

    W.T. Read Jr., LXXXVII. Theory of dislocations in germanium. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45(367), 775–796 (1954)

    CAS  Article  Google Scholar 

  37. 37.

    M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, J. Bøttiger, Low temperature superionic conductivity in strained yttria stabilized zirconia. Adv. Funct. Mater. 20(13), 2071–2076 (2010)

    CAS  Article  Google Scholar 

  38. 38.

    C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Ionic conductivity and activation energy for oxygen ion transport in superlattices—the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10(31), 4623–4635 (2008)

    CAS  Article  Google Scholar 

  39. 39.

    S. Azad, O.A. Marina, C.M. Wang, L. Saraf, V. Shutthanandan, D.E. McCready, A. El-Azab, J.E. Jaffe, M.H. Engelhard, C.H. Peden, S. Thevuthasan, Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl. Phys. Lett. 86(13), 131906 (2005)

    Article  CAS  Google Scholar 

  40. 40.

    K.P. McKenna, Electronic and chemical properties of a surface-terminated screw dislocation in MgO. J. Am. Chem. Soc. 135(50), 18859–18865 (2013)

    CAS  Article  Google Scholar 

  41. 41.

    R. Konta, T. Ishii, H. Kato, A. Kudo, Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J. Phys. Chem. B 108(26), 8992–8995 (2004)

    CAS  Article  Google Scholar 

  42. 42.

    K. Szot, W. Speier, R. Carius, U. Zastrow, W. Beyer, Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. Phys. Rev. Lett. 88(7), 075508 (2002)

    CAS  Article  Google Scholar 

  43. 43.

    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5(4), 312 (2006)

    CAS  Article  Google Scholar 

  44. 44.

    C. Lenser, Z. Connell, A. Kovács, R. Dunin-Borkowski, A. Köhl, R. Waser, R. Dittmann, Identification of screw dislocations as fast-forming sites in Fe-doped SrTiO3. Appl. Phys. Lett. 102(18), 183504 (2013)

    Article  CAS  Google Scholar 

  45. 45.

    C. Lenser, A. Koehl, I. Slipukhina, H. Du, M. Patt, V. Feyer, C.M. Schneider, M. Lezaic, R. Waser, R. Dittmann, Formation and movement of cationic defects during forming and resistive switching in SrTiO3 thin film devices. Adv. Funct. Mater. 25(40), 6360–6368 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    F. Messerschmitt, M. Kubicek, S. Schweiger, J.L. Rupp, Memristor kinetics and diffusion characteristics for mixed anionic electronic SrTiO3δ bits: the memristor based cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24(47), 7448–7460 (2014)

    CAS  Article  Google Scholar 

  47. 47.

    E. Mikheev, B.D. Hoskins, D.B. Strukov, S. Stemmer, Resistive switching and its suppression in Pt/Nb: SrTiO3 junctions. Nat. Commun. 5, 3990 (2014)

    CAS  Article  Google Scholar 

  48. 48.

    J.H. Lee, J.H. Park, T.D. Dongale, T.G. Kim, Vacancy-modulated self-rectifying characteristics of NiOx/Al2O3-based nanoscale ReRAM devices. J. Alloys Compd. 821, 153247 (2019)

    Article  CAS  Google Scholar 

  49. 49.

    S. Patil, M. Chougale, T. Rane, S. Khot, A. Patil, O. Bagal, S. Jadhav, A. Sheikh, S. Kim, T. Dongale, Solution-processable ZnO thin film memristive device for resistive random-access memory application. Electronics 7(12), 445 (2018)

    CAS  Article  Google Scholar 

  50. 50.

    F. Gul, Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor. Ceram. Int. 44(10), 11417–11423 (2018)

    CAS  Article  Google Scholar 

  51. 51.

    S.S. More, P.A. Patil, K.D. Kadam, H.S. Patil, S.L. Patil, A.V. Pawar, S.S. Kanapally, D.V. Desai, S.M. Bodake, R.K. Kamat, S. Kim, Resistive switching and synaptic properties modifications in gallium-doped zinc oxide memristive devices. Results Phys. 12, 1946–1955 (2019)

    Article  Google Scholar 

  52. 52.

    T.S. Bhat, A.S. Kalekar, D.S. Dalavi, C.C. Revadekar, A.C. Khot, T.D. Dongale, P.S. Patil, Hydrothermal synthesis of nanoporous lead selenide thin films: photoelectrochemical and resistive switching memory applications. J. Mater. Sci.: Mater. Electron. 30(19), 17725–17734 (2019)

    CAS  Google Scholar 

  53. 53.

    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox based resistive switching memories–nanoionic mechanisms, prospects and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    CAS  Article  Google Scholar 

  54. 54.

    F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random-access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R 83, 1–59 (2014)

    Article  Google Scholar 

  55. 55.

    F. Gül, Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array. Results Phys. 12, 1091–1096 (2019)

    Article  Google Scholar 

  56. 56.

    T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mater. Sci. Semicond. Process. 38, 228–233 (2015)

    CAS  Article  Google Scholar 

  57. 57.

    B. Martín-García, D. Spirito, R. Krahne, I. Moreels, Solution-processed silver sulfide nanocrystal film for resistive switching memories. J. Mater. Chem. C 6(48), 13128–13135 (2018)

    Article  Google Scholar 

  58. 58.

    A. Zaleska, J.W. Sobczak, E. Grabowska, J. Hupka, Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl. Catal. B 78(1–2), 92–100 (2008)

    CAS  Article  Google Scholar 

  59. 59.

    Y. Huo, X. Yang, J. Zhu, H. Li, Highly active and stable CdS–TiO2 visible photocatalyst prepared by in situ sulfurization under supercritical conditions. Appl. Catal. B 106(1–2), 69–75 (2011)

    CAS  Google Scholar 

  60. 60.

    U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14(5), 2401–2406 (2014)

    CAS  Article  Google Scholar 

  61. 61.

    M.A. Rahman, S.A. Tawfik, T. Ahmed, M.J. Spencer, S. Walia, S. Sriram, M. Bhaskaran, Differential work-function enabled bifunctional switching in strontium titanate flexible resistive memories. ACS Appl. Mater. Interfaces. 12(6), 7326–7333 (2020)

    CAS  Article  Google Scholar 

  62. 62.

    M.G. Helander, M.T. Greiner, Z.B. Wang, W.M. Tang, Z.H. Lu, Work function of fluorine doped tin oxide. J. Vac. Sci. Technol. A 29(1), 011019 (2011)

    Article  CAS  Google Scholar 

Download references


This study was supported by Basic research program (2016R1D1A1B01009537) through the National Research Foundation (NRF) of Korea and by the MOTIE (Ministry of Trade, Industry & Energy (10080581) and KSRC (Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device.

Author information



Corresponding authors

Correspondence to Deok-kee Kim or Pramod S. Patil.

Ethics declarations

Conflict of interest

All authors declare there is no conflict of interest of any kind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhat, T.S., Revadekar, C.C., Patil, S.S. et al. Photo-induced resistive switching in CdS-sensitized TiO2 nanorod array memristive device. J Mater Sci: Mater Electron 31, 10919–10929 (2020).

Download citation