Thermally stable tungsten and titanium doped antimony tellurium films for phase change memory application

Abstract

Sb2Te3 alloy, as one of the representative phase change base materials, is largely limited by its low thermal stability in the practical application. Here, both tungsten and titanium are used to improve the thermal stability of materials. After co-doping, the crystallization temperature is significantly increased, and the increment will be leveled up if more tungsten content was doped in the W–Ti–(Sb2Te3). Specifically, the amorphous-to-metastable FCC phase transition temperature is about 120 °C for pure Sb2Te3, approximately 230 °C for W0.03Ti0.045–(Sb2Te3)0.925, and around 304 °C for W0.07Ti0.045–(Sb2Te3)0.885, respectively. Beyond that, the second FCC-to-hexagonal phase transition temperature is also improved due to the addition of tungsten atoms, as obtained from the XRD analysis result. As observed in the bright images of W0.03Ti0.045–(Sb2Te3)0.925, tungsten dopant can refine the crystalline grains effectively further, by utilizing transmission electron microscope. In the final, electrical characterization of phase change memory devices proves W0.03Ti0.045–(Sb2Te3)0.925 owns excellent operation properties, such as higher-speed reversible write/erase, and better resistance stability of both high and low states, compared with the widely used Ge2Sb2Te5 phase change material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    S.W. Fong, C.M. Neumann, H.S.P. Wong, I.E.E.E. Trans, Electron Devices 64, 1 (2017)

    Article  Google Scholar 

  2. 2.

    H.S.P. Wong, S. Salahuddin, Nat. Nanotechnol. 10, 191 (2015)

    CAS  Article  Google Scholar 

  3. 3.

    N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, M. Takao, Jpn. J. Appl. Phys. 26, 61 (1987)

    Article  Google Scholar 

  4. 4.

    G. Wang, Y. Chen, X. Shen, J. Li, R. Wang, Y. Lu, S. Dai, T. Xu, Q. Nie, A.C.S. Appl, Mater. Interfaces 6, 8488 (2014)

    CAS  Article  Google Scholar 

  5. 5.

    C. Wang, J. Zhai, S. Bai, X. Yao, Mater. Lett. 64, 2314 (2010)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Yin, S. Morioka, S. Kozaki, R. Satoh, S. Hosaka, Appl. Surf. Sci. 349, 230 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    G. Wang, X. Shen, Y. Lu, S. Dai, Q. Nie, T. Xu, Thin Solid Films 585, 57 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    K. Ding, F. Rao, M. Xia, Z. Song, L. Wu, S. Feng, J. Alloys Compd. 688, 22 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    M. Zhu, L. Wu, F. Rao, Z. Song, K. Ren, X. Ji, S. Song, D. Yao, S. Feng, Appl. Phys. Lett. 104, 053119 (2014)

    Article  Google Scholar 

  10. 10.

    M. Xia, M. Zhu, Y. Wang, Z. Song, F. Rao, L. Wu, Y. Cheng, S. Song, A.C.S. Appl, Mater. Interfaces 7, 7627 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    M. Zhu, M. Xia, F. Rao, X. Li, L. Wu, X. Ji, S. Lv, Z. Song, S. Feng, H. Sun, S. Zhang, Nat. Commun. 5, 4086 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    L. Shen, S. Song, Z. Song, L. Li, T. Guo, Y. Cheng, L. Wu, B. Liu, S. Feng, J. Mater. Sci. Mater. Electron. 28, 923 (2017)

    CAS  Article  Google Scholar 

  13. 13.

    C. Peng, L. Wu, F. Rao, Z. Song, P. Yang, H. Song, K. Ren, X. Zhou, M. Zhu, B. Liu, J. Chu, Appl. Phys. Lett. 101, 122108 (2012)

    Article  Google Scholar 

  14. 14.

    T.L. Anderson, H.B. Krause, Acta Crystallogr. Sect. B B39, 1307 (1974)

    Article  Google Scholar 

  15. 15.

    Y. Yin, H. Sone, S. Hosaka, J. Appl. Phys. 102, 1 (2007)

    Article  Google Scholar 

  16. 16.

    F.T.L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J.M. Sasaki, Acta Crystallogr. Sect. A A72, 385 (2016)

    Article  Google Scholar 

  17. 17.

    Y. Zheng, M. Xia, Y. Cheng, F. Rao, K. Ding, W. Liu, Y. Jia, Z. Song, S. Feng, Nano Res. 9, 3453 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    B. Liu, Z. Song, S. Feng, B. Chen, Mater. Sci. Eng. B 119, 125 (2005)

    Article  Google Scholar 

  19. 19.

    M. Boniardi, A. Redaelli, A. Pirovano, I. Tortorelli, D. Ielmini, F. Pellizzer, J. Appl. Phys. 105, 084506 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0407500, 2017YFA0206101, 2017YFB0701703, 2017YFA0206104, 2017YFB0405601), National Natural Science Foundation of China (Grant Nos. 61874178, 61874129, 91964204, 61904186, 61904189), Science and Technology Council of Shanghai (Grant Nos. 17DZ2291300, 19JC1416801), Shanghai Sailing Program (Grant No. 19YF1456100).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sannian Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Song, S., Xue, Y. et al. Thermally stable tungsten and titanium doped antimony tellurium films for phase change memory application. J Mater Sci: Mater Electron 31, 10912–10918 (2020). https://doi.org/10.1007/s10854-020-03642-x

Download citation