Novel series of MLa2WO7(M = Sr, Ba) microwave dielectric ceramic systems with monoclinic structures

Abstract

Novel series of MLa2WO7(M = Sr, Ba) ceramics were prepared via a traditional solid-state reaction method. The sintering characteristic, crystal structures, micromorphology and microwave dielectric performances of systems were systematically investigated. X-ray diffraction (XRD) and Rietveld refinement display that both SrLa2WO7(SLW) and BaLa2WO7(BLW) ceramics are monoclinic structure with Fdd (No. 14) space group. SLW and BLW ceramics have high relative density (more than 94%). The SLW ceramics sintered at 1400 °C exhibited good microwave dielectric performances with Ɛr = 23.2, Q × f = 29,720 GHz, τf = − 127 ppm/°C and the BLW ceramics sintered at 1300 °C had excellent properties of Ɛr = 25.3, Q × f = 36,473 GHz, τf  = − 108 ppm/°C. These results show that MLa2WO7(M = Sr, Ba) ceramics could be candidates for microwave devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    D. Zhou, L.X. Pang, D.W. Wang, Z.M. Qi, I.M. Reaney, High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS. Sustain. Chem. Eng. 6, 11138–11143 (2018)

    CAS  Article  Google Scholar 

  2. 2.

    B. Tang, Q. Xiang, Z. Fang, X. Zhang, Z. Xiong, H. Li, C. Yuan, S. Zhang, Influence of Cr3+ substitution for Mg2+ on the crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics. Ceram. Int. 45, 11484–11490 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    A. Feteira, D.C. Sinclair, Microwave dielectric properties of low firing temperature Bi2W2O9 ceramics. J. Am. Ceram. Soc. 91, 1338–1341 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    H.F. Zhou, N. Wang, J.Z. Gong, G. Fan, X.L. Chen, Processing of low-fired glass-free Li2MgTi3O8 microwave dielectric ceramics. J. Alloy. Compd. 688, 8–13 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    S. Zhai, P. Liu, D. Liu, Y. Chu, Z. Yang, Low-firing Li4Mg3Ti2O9–CaTiO3 composite ceramics with temperature stable microwave dielectric properties. J. Mater. Sci. Mater. Electron. 30, 20002–20009 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    W. Lei, Z.Y. Zou, Z.H. Chen, B. Ullah, A. Zeb, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, X.C. Wang, Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios. J. Am. Ceram. Soc. 101, 25–30 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    H. Zhou, X. Tan, J. Huang, N. Wang, G. Fan, X. Chen, Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1−xLi2xTixO1+2x solid solution ceramics. J. Alloy. Compd. 696, 1255–1259 (2017)

    CAS  Article  Google Scholar 

  8. 8.

    K. Du, X.Q. Song, J. Li, W.Z. Lu, X.C. Wang, X.H. Wang, W. Lei, Phase compositions and microwave dielectric properties of Sn-deficient Ca2SnO4 ceramics. J. Alloy. Compd. 802, 488–492 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    G.H. Chen, J.S. Chen, X.L. Kang, Y. Luo, Q. Feng, C.L. Yuan, Y. Yang, T. Yang, Structural and microwave dielectric properties of new CaTi1−x(Al0.5Nb0.5)xO3 thermally stable ceramics. J. Alloy. Compd. 675, 301–305 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    J.S. Chen, G.H. Chen, X.L. Kang, Y. Luo, Y. Yang, T. Yang, C.L. Yuan, C.R. Zhou, Microstructure and microwave dielectric properties of BaNd2Ti4−xAl4x/3O12 ceramics. J. Mater. Sci. Mater. Electron. 27, 8234–8241 (2016)

    CAS  Article  Google Scholar 

  11. 11.

    K. Wang, H. Zhou, X. Liu, W. Sun, X. Chen, H. Ruan, A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. J. Eur. Ceram. Soc. 39, 1122–1126 (2019)

    Article  Google Scholar 

  12. 12.

    S. Liu, B. Tang, M. Zhou, P. Zhao, Q. Xiang, X. Zhang, Z. Fang, S. Zhang, Microwave dielectric characteristics of high permittivity Ca0.35Li0.25Nd0.35Ti1-x(Zn1/3Ta2/3)xO3 ceramics (x = 0.00–0.12). Ceram. Int. 45, 8600–8606 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    V. Venugopal, P.S. Anjana, O. Parkash, D. Kumar, M.T. Sebastian, Synthesis, characterization, and microwave dielectric properties of Sr2−xLa2Mg1+xW2O12 (x=0, 1) ceramics. J. Am. Ceram. Soc. 93, 2467–2469 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    R. Rajamma, M.T. Sebastian, Microwave dielectric properties of La6Mg4A2W2O24[A=Ta and Nb] ceramics. J. Am. Ceram. Soc. 90, 2472–2475 (2007)

    CAS  Article  Google Scholar 

  15. 15.

    H.L. Pan, Y.X. Mao, L. Cheng, H.T. Wu, New Li3Ni2NbO6 microwave dielectric ceramics with the orthorhombic structure for LTCC applications. J. Alloy. Compd. 723, 667–674 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    M. Xiao, Y. Wei, Q. Gu, Z. Zhou, P. Zhang, Relationships between bond ionicity, lattice energy, bond energy and the microwave dielectric properties of La(Nb1-xTax)O4 (x = 0–0.10) ceramics. J. Alloy. Compd. 775, 168–174 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    W.B. Li, D. Zhou, D. Guo, L.X. Pang, G.H. Chen, Z.M. Qi, Q.P. Wang, H.C. Liu, Structure, Raman spectra, far-infrared spectra and microwave dielectric properties of temperature independent CeVO4TiO2 composite ceramics. J. Alloy. Compd. 694, 40–45 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    H. Zhou, X. Tan, X. Chen, H. Ruan, Effect of raw materials pretreated by physical grinding method on the sintering ability and microwave dielectric properties of Li2MgTiO4 ceramics. J. Alloy. Compd. 731, 839–843 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    H. Zhou, J. Gong, N. Wang, X. Chen, A novel temperature stable microwave dielectric ceramic with low sintering temperature and high quality factor. Ceram. Int. 42, 8822–8825 (2016)

    CAS  Article  Google Scholar 

  20. 20.

    W. Liu, R. Zuo, A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. J. Eur. Ceram. Soc. 38, 339–342 (2018)

    Article  Google Scholar 

  21. 21.

    X.Q. Liu, X.M. Chen, Microwave dielectric characteristics of SrLaGaO4 and SrNdGaO4 ceramics. J. Eur. Ceram. Soc. 26, 1969–1971 (2006)

    CAS  Article  Google Scholar 

  22. 22.

    T. Oishi, A. Kan, H. Ohsato, H. Ogawa, Crystal structure–microwave dielectric property relations in Sm(Nb1−xTax)(Ti1−yZry)O6 ceramics. J. Eur. Ceram. Soc. 26, 2075–2079 (2006)

    CAS  Article  Google Scholar 

  23. 23.

    A. Feteira, D.C. Sinclair, K.Z. Rajab, M.T. Lanagan, Crystal structure and microwave dielectric properties of alkaline-earth hafnates, AHfO3(A=Ba, Sr, Ca). J. Am. Ceram. Soc. 91, 893–901 (2008)

    CAS  Article  Google Scholar 

  24. 24.

    I.N. Jawahar, M.T. Sebastian, P. Mohanan, Microwave dielectric properties of Ba5-xSrxTa4O15, Ba5NbxTa4-xO15 and Sr5NbxTa4−xO15 ceramics. Mater. Sci. Eng. B. 106, 207–212 (2004)

    Article  Google Scholar 

  25. 25.

    A. Feteira, L.J. Gillie, R. Elsebrock, D.C. Sinclair, Crystal structure and dielectric properties of LaYbO3. J. Am. Ceram. Soc. 90, 1475–1482 (2008)

    Article  Google Scholar 

  26. 26.

    M.T. Sebastian, L.A. Khalam, S. Thomas, Temperature-stable and low-loss dielectrics in the Ca(B´1/2Ta1/2)O3 [B´=Lanthanides, Y, and In] system. J. Am. Ceram. Soc. 90, 2476–2483 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011 and 2017GXNSFDA198027).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Zhou, H., Wu, Q. et al. Novel series of MLa2WO7(M = Sr, Ba) microwave dielectric ceramic systems with monoclinic structures. J Mater Sci: Mater Electron 31, 10819–10824 (2020). https://doi.org/10.1007/s10854-020-03633-y

Download citation