Role of MWCNT concentration in MWCNT/ZnFe2O4 nanocomposites for enhanced photocatalytic performance

Abstract

Here, we report the MWCNT/ZnFe2O4 nanocomposites with varying MWCNT content synthesized by a hydrothermal method. The synthesized nanocomposites were characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and vibrating sample magnetometer (VSM). Photocatalytic activity of MWCNT/ZnFe2O4 was investigated by photocatalytic decolorization of methylene blue (MB) under UV-light. The photocatalytic performance shows that the photo-degradation of methylene blue increases with respect to the crystallite size of the composites. Nanocomposites can decolorize 99% MB in 30 min. The enhanced activity of MWCNT/ZnFe2O4 nanocomposites is attributed from the collective contribution of both high-adsorption capacity towards MB and due to the participation of holes (h+), ·OH radicals and ·\({\mathrm{O}}_{2}^{-}\) radicals. In addition, the MWCNT/ZnFe2O4 nanocomposites can be retrieved using an external magnet. As a result, the MWCNT/ZnFe2O4 might have a beneficial application in removing dyestuff wastewaters on a very large scale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    A. Fujishima, K. Honda, Nature 238, 37 (1972)

    CAS  Article  Google Scholar 

  2. 2.

    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  3. 3.

    G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo, F. Bonaccorso, Chem. Soc. Rev. 44, 3244 (2015)

    CAS  Article  Google Scholar 

  4. 4.

    M.H. Habibi, A.H. Habibi, M. Zendehdel, M. Habibi, Spectrochim. Acta A 110, 226 (2013)

    CAS  Article  Google Scholar 

  5. 5.

    Y. Yao, Y. Cai, F. Lu, J. Qin, F. Wei, C. Xu, S. Wang, Ind. Eng. Chem. Res. 53, 17294 (2014)

    CAS  Article  Google Scholar 

  6. 6.

    Y. Yao, J. Qin, H. Chen, F. Wei, X. Liu, J. Wang, S. Wang, J. Hazard. Mater. 291, 28 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    A.A. Tahir, K.G.U. Wijayantha, J. Photochem. Photobiol. A 216, 119 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    N.K. Veldurthi, N.K. Eswar, S.A. Singh, G. Madras, Catal. Sci. Technol. 8, 1083 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    N.M. Mahmoodi, Mater. Res. Bull. 48, 4255 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    A. Ghaderi, S. Abbasi, F. Farahbod, Iran. J. Chem. Eng. 12, 96 (2015)

    Google Scholar 

  11. 11.

    R.D. Raland, J.P. Borah, J. Phys. D 50, aa4e9a (2017)

    Google Scholar 

  12. 12.

    X. Xu, A.K. Azad, J.T.S. Irvine, Catal. Today 199, 22 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    L. Zhang, Y. He, P. Ye, Y. Wu, T. Wu, J. Alloys Compd. 549, 105 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    R. Dom, R. Subasri, N.Y. Hebalkar, A.S. Chary, P.H. Borse, RSC Adv. 2, 12782 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, J. Mater. Chem. A 3, 8353 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    Y. Fu, X. Wang, Ind. Eng. Chem. Res. 50, 7210 (2011)

    CAS  Article  Google Scholar 

  17. 17.

    F.A. Jumeri, H.N. Lim, S.N. Ariffin, N.M. Huang, P.S. Teo, S.O. Fatin, C.H. Chia, I. Harrison, Ceram. Int. 40, 7057 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    S. Wu, P. Wang, Y. Cai, D. Liang, Y. Ye, Z. Tian, J. Liu, C. Liang, RSC Adv. 5, 9069 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    Y.K. Kim, H. Park, Energy Environ. Sci. 4, 685 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    B.K. Vijayan, N.M. Dimitrijevic, D. Finkelstein-Shapiro, J. Wu, K.A. Gray, ACS Catal. 2, 223 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    K. Ouyang, S. Xie, X. Ma, Ceram. Int. 39, 7531 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    T. Peng, P. Zeng, D. Ke, X. Liu, X. Zhang, Energy Fuels 25, 2203 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    X. Wang, M. Liu, Q. Chen, K. Zhang, J. Chen, M. Wang, P. Guo, L. Guo, Int. J. Hydrogen Energy 38, 13091 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    L. Ge, C. Han, Appl. Catal. B 117–118, 268 (2012)

    Article  CAS  Google Scholar 

  25. 25.

    M. Hazarika, P. Chinnamuthu, J.P. Borah, J. Mater. Sci. Mater. Electron. 29, 12231 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 02, 154 (2012)

    Article  CAS  Google Scholar 

  27. 27.

    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    CAS  Article  Google Scholar 

  28. 28.

    A.B. Kaganj, A.M. Rashidi, R. Arasteh, S. Taghipoor, J. Exp. Nanosci. 4, 21 (2009)

    CAS  Article  Google Scholar 

  29. 29.

    E. Arzt, Acta Mater. 46, 5611 (1998)

    CAS  Article  Google Scholar 

  30. 30.

    J. Chen, S. Shen, P. Guo, P. Wu, L. Guo, J. Mater. Chem. A 2, 4605 (2014)

    CAS  Article  Google Scholar 

  31. 31.

    M.-Q. Yang, B. Weng, Y.-J. Xu, J. Mater. Chem. A 2, 1710 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    R.D.R. Kahmei, J.P. Borah, Nanotechnology 30, 35706 (2018)

    Article  CAS  Google Scholar 

  33. 33.

    H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, RSC Adv. 6, 6589 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    T.B. Nguyen, R.A. Doong, RSC Adv. 7, 50006 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    H. Ding, H. Sun, Y. Shan, J. Photochem. Photobiol. A 169, 101 (2005)

    CAS  Article  Google Scholar 

  36. 36.

    E.M. Girotto, W.A. Gazotti, C.F. Tormena, M.-A. De Paoli, Electrochim. Acta 47, 1351 (2002)

    CAS  Article  Google Scholar 

  37. 37.

    V.R. De Mendonҫa, C.J. Dalmaschio, E.R. Leite, M. Niederberger, C. Ribeiro, J. Mater. Chem. A 3, 2216 (2015)

    Article  Google Scholar 

  38. 38.

    K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochem. Commun. 2, 207 (2000)

    CAS  Article  Google Scholar 

  39. 39.

    I. Kazeminezhad, A. Sadollahkhani, J. Mater. Sci. Mater. Electron. 27, 4206 (2016)

    CAS  Article  Google Scholar 

  40. 40.

    N. Bouazza, M. Ouzzine, M.A. Lillo-Ródenas, D. Eder, A. Linares-Solano, Appl. Catal. B 92, 377 (2009)

    CAS  Article  Google Scholar 

  41. 41.

    S. Abbasi, M. Hasanpour, J. Mater. Sci. Mater. Electron. 28, 1307 (2017)

    CAS  Article  Google Scholar 

  42. 42.

    F. Amano, E. Ishinaga, A. Yamakata, J. Phys. Chem. C 117, 22584 (2013)

    CAS  Article  Google Scholar 

  43. 43.

    H. Wang, T. You, W. Shi, J. Li, L. Guo, J. Phys. Chem. C 116, 6490 (2012)

    CAS  Article  Google Scholar 

  44. 44.

    Y. Liu, S. Wei, W. Gao, J. Hazard. Mater. 287, 59 (2015)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. P. Borah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hazarika, M., Chinnamuthu, P., Borgohain, C. et al. Role of MWCNT concentration in MWCNT/ZnFe2O4 nanocomposites for enhanced photocatalytic performance. J Mater Sci: Mater Electron 31, 10783–10794 (2020). https://doi.org/10.1007/s10854-020-03629-8

Download citation