Formation of hollow-cubic Ni(OH)2/CuS2 nanocomposite via sacrificial template method for high performance supercapacitors


Metal hydroxide serving as a promising electrode material for the supercapacitors, has attracted considerable interests in the area of energy storage. However, the low cycling stability and electrical conductivity restrict its further application. Here, a kind of hollow-cubic Ni(OH)2/CuS2 with excellent electrochemical performance has been prepared via a facile one-step sacrificial template method. The obtained Ni(OH)2/CuS2 shows an outstanding specific capacitance of 1174 F g−1 at 1 A g−1 with 73.9% retention after 2000 charge–discharge cycles. Furthermore, the assembled asymmetric supercapacitors based on hollow-cubic Ni(OH)2/CuS2 nanocomposite and reduced graphene oxide (RGO) exhibits a high specific energy density of 27.8 Wh kg−1 at the power density of 390 W kg−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Q. Chen, X. Wang, F. Chen, N. Zhang, M. Mingming, Extremely strong and tough polythiophene composite for flexible electronics. Chem. Eng. J. (2019).

    Article  Google Scholar 

  2. 2.

    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Wang, Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25, 5336–5342 (2013)

    CAS  Article  Google Scholar 

  4. 4.

    W. Chaikittisilp, M. Hu, H. Wang, H.S. Huang, T. Fujita, C.W. Wu, L.C. Chen, Y. Yamauchi, K. Ariga, Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 48, 7259–7261 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    H.S. Kim, M.A. Abbas, M.S. Kang, H. Kyung, J.H. Bang, W.C. Yoo, Study of the structure–properties relations of carbon spheres affecting electrochemical performances of EDLCs. ACS Appl. Mater. Interfaces 11(13), 12492–12503 (2019)

    Article  Google Scholar 

  6. 6.

    D.-J. Hsu, Y.-W. Chi, K.-P. Huang, C.-C. Hu, Electrochemical activation of vertically grown graphene nanowalls synthesized by plasma-enhanced chemical vapor deposition for high-voltage supercapacitors. Electrochim. Acta 300, 324–332 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Q. Wang, Y. Luo, R. Hou, S. Zaman, K. Qi, H. Liu, H.S. Park, B.Y. Xia, Redox tuning in crystalline and electronic structure of bimetal-organic frameworks derived cobalt/nickel boride/sulfide for boosted faradaic capacitance. Adv. Mater. (2019).

    Article  Google Scholar 

  8. 8.

    Z. Lu, C. Zheng, W. Zhu, X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 47, 9651–9653 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 11, 154–161 (2015)

    CAS  Article  Google Scholar 

  10. 10.

    X. Wang, J. Hu, Y. Su, J. Hao, J. Lian, Ni Foam-Ni3S2@Ni(OH)2-graphene sandwich structure electrode materials: facile synthesis and high supercapacitor performance. Chemistry 23, 4128 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    M. Liang, M. Zhao, H. Wang, J. Shen, X. Song, Enhanced cycling stability of hierarchical NiCo2S4@Ni(OH)(2)@PPy core–shell nanotube arrays for aqueous asymmetric supercapacitors. J. Mater. Chem. (2018).

    Article  Google Scholar 

  12. 12.

    S. Liu, I. Shackery, U.M. Patil, S.C. Lee, B. Park, H.B. An, K.Y. Chung, S.C. Jun, Hierarchical MnCo-layered double hydroxides@Ni(OH)2 core–shell heterostructures as advanced electrodes for supercapacitors. J. Mater. Chem. (2016).

    Article  Google Scholar 

  13. 13.

    Z. Liang, C. Qu, W. Zhou, R. Zhao, H. Zhang, B. Zhu, W. Guo, W. Meng, Y. Wu, W. Aftab, Q. Wang, R. Zou, Synergistic effect of Co-Ni hybrid phosphide nanocages for ultrahigh capacity fast energy storage. Adv. Sci. (Weinh.) 6, 1802005 (2019)

    Google Scholar 

  14. 14.

    W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang, J. Liu, MOF derived Ni-Co-S nanosheets on electrochemically activated carbon cloth via an etching/ion exchange method for wearable hybrid supercapacitors. Chem. Eng. J. 371, 461–469 (2019)

    CAS  Article  Google Scholar 

  15. 15.

    R.R. Salunkhe, J. Lin, V. Malgras, S.X. Dou, J.H. Kim, Y. Yamauchi, Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Rapid Commun. 11, 211–218 (2015)

    CAS  Google Scholar 

  16. 16.

    S. Zhao, Y.H. Linfeng, L.J. Wu, Preparation of MnCo2O4@Ni(OH)(2) core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct. Mater. (2016).

    Article  Google Scholar 

  17. 17.

    J.-G. Wang, R. Zhou, D. Jin, K. Xie, B. Wei, Controlled synthesis of NiCo2S4 nanostructures on nickel foams for high-performance supercapacitors. Energy Storage Mater. 2, 1–7 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    S.D. Sun, Z.M. Yang, Cu2O-templated strategy for synthesis of definable hollow architectures. Chem. Commun. 50, 7403–7415 (2014)

    CAS  Article  Google Scholar 

  19. 19.

    S. Sun, Z. Yang, Cu2O-templated strategy for synthesis of definable hollow architectures. Chem. Commun. 50, 7403 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    G. Hatui, G.C. Nayak, G. Udayabhanu, Y.K. Mishra, D.D. Pathak, Template-free single pot synthesis of SnS2@Cu2O/reduced graphene oxide (rGO) nanoflowers for high performance supercapacitors. New J. Chem. 42, 14010–14011 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Xu, X. Gao, W. Chu, Q. Li, T. Li, C. Liang, Z. Lin, The Ni-Co sulfide nanoboxes with tunable compositions for high-performance electrochemical pseudocapacitors. J. Mater. Chem. (2016).

    Article  Google Scholar 

  22. 22.

    L.B. Ren, J.G. Wang, H.Y. Liu, M.H. Shao, B.Q. Wei, Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochim. Acta 321, 9 (2019)

    Article  Google Scholar 

  23. 23.

    J.G. Wang, Z.Y. Zhang, X.Y. Zhang, X.M. Yin, X. Li, X.R. Liu, F.Y. Kang, B.Q. Wei, Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39, 647–653 (2017)

    Article  Google Scholar 

  24. 24.

    G. Saeed, S. Kumar, P. Bandyopadhyay, N. Hoon Kim, J. Lee, Hierarchical design of Cu-Ni(OH)2/Cu-MnxOy core/shell nanosheet arrays for ultra-high performance of asymmetric supercapacitor. Chem. Eng. J. 369, 705–715 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    X. Chen, J. Ding, X. Chen, X. Liu, G. Zhuang, Z. Zhang, Porous tremella-like NiCo2S4 networks electrodes for high-performance dye-sensitized solar cells and supercapacitors. Solar Energy 176, 762–770 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    J.C.W. Folmer, F. Jellinek, G.H.M. Calis, The electronic structure of pyrites, particularly CuS2 and Fe1-xCuxSe2: an XPS and Mössbauer study. J. Solid State Chem. 72, 137–144 (1988)

    CAS  Article  Google Scholar 

  27. 27.

    K.S. Murasheva, S.V. Saikova, S.A. Vorobiev, A.S. Romanchenko, Y.L. Mikhlin, Characteristics of copper sulfide nanoparticles obtained in the copper sulfate–sodium thiosulfate system. J. Solid State Chem. 58, 1383–1390 (2017)

    CAS  Google Scholar 

  28. 28.

    G. Nie, L. Zhang, X. Lu, X. Bian, C.J.D.T. Wang, A one-pot and in situ synthesis of CuS-graphene nanosheet composites with enhanced peroxidase-like catalytic activity. Chem. Commun. (2013).

    Article  Google Scholar 

  29. 29.

    T.F. Hung, Z.W. Yin, S.B. Betzler, W.J. Zheng, J. Yang, H.M. Zheng, Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115–122 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    M. Yu, R. Liu, J. Liu, S. Li, Y. Ma, Polyhedral-Like NiMn-Layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors. Small. (2017).

    Article  Google Scholar 

  31. 31.

    J.J. Wang, J.G. Wang, H.Y. Liu, C.G. Wei, F.Y. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. Journal of Materials Chemistry A 7, 13727–13735 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    H.H. Sun, J.G. Wang, X.Z. Zhang, C.J. Li, F. Liu, W.J. Zhu, W. Hua, Y.Y. Li, M.H. Shao, Nanoconfined construction of MoS2@C/MoS2 core-sheath nanowires for superior rate and durable Li-Ion energy storage. Acs Sustain. Chem. Eng. 7, 5346–5354 (2019)

    CAS  Article  Google Scholar 

  33. 33.

    K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017)

    Article  Google Scholar 

  34. 34.

    W. Zhang, X. Guo, C. Qian, Y. Qian, C. Chu, M. Fan, F. Xu, S. Qian, H. Yang, Amorphous MnO2 on carbon substrate with ordered submicron pore array structure for high performance supercapacitor electrode. Nanosci. Nanotechnol. (2019).

    Article  Google Scholar 

  35. 35.

    X.L. Zheng, X. Han, X.X. Zhao, J. Qi, Q.X. Ma, K. Tao, L. Han, Construction of Ni-Co-Mn layered double hydroxide nanoflakes assembled hollow nanocages from bimetallic imidazolate frameworks for supercapacitors. Mater. Res. Bull. 106, 243–249 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    L. Li, K.S. Hui, K.N. Hui, Y.R. Cho, Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 19687–19696 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    F.Z. Ji, D. Jiang, Q.Y. Xia, X.X. Pan, X.M. Chen, Y. Zhang, High-performance MoO3 nanoplate eectrode for asymmetric supercapacitor with long-term electrochemical stability. J. Nanosci. Nanotechnol. 19, 5817–5824 (2019)

    CAS  Article  Google Scholar 

  38. 38.

    L. Ma, T. Chen, S.Z. Li, P.B. Gui, G.J. Fang, A 3D self-supported coralline-like CuCo2S4@NiCo2S4 core-shell nanostructure composite for high-performance solid-state asymmetrical supercapacitors. Nanotechnology 30, 10 (2019)

    Google Scholar 

  39. 39.

    S. Gao, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. J. Colloid Interface Sci. 531, 83–90 (2018)

    CAS  Article  Google Scholar 

  40. 40.

    I.M. Babu, J.J. William, G. Muralidharan, Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl. Surf. Sci. 480, 371–383 (2019)

    CAS  Article  Google Scholar 

  41. 41.

    C.H. Tang, Z. Tang, H. Gong, Hierarchically porous Ni-Co oxide for high reversibility asymmetric full-cell supercapacitors. J. Electrochem. Soc. 159, A651–A656 (2012)

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge the support by the National Key R&D Program of China (2018YFB2001200) and the Open Sharing Fund for the Large-scale Instruments and Equipments of CUMT(DYGX-015).

Author information



Corresponding authors

Correspondence to Yezeng He or Dongdong Zhuang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, J., Ji, X. et al. Formation of hollow-cubic Ni(OH)2/CuS2 nanocomposite via sacrificial template method for high performance supercapacitors. J Mater Sci: Mater Electron 31, 10489–10498 (2020).

Download citation