Skip to main content

Improve electrochemical performance of spinel LiNi0.5Mn1.5O4 via surface modified by Li1.2Ni0.2Mn0.6O2 layered materials


Spinel LiNi0.5Mn1.5O4(LNMO) is one of the most promising cathode materials for lithium-ion batteries due to its high operating voltage (4.7 V, vs. Li / Li+). However, the high operating voltage will cause the LNMO capacity to decay due to the dissolution of its Mn and the decomposition of the electrolyte. Although surface modification can improve the cycle stability of LNMO, most of the current surface modification will cause different degrees of loss in discharge capacity. Herein, for the first time, Li1.2Ni0.2Mn0.6O2(LIR) is coated on the host material LNMO as the surface material by co-precipitation method. As the coating materials, LIR does not destroy the crystal structure and micromorphology of LNMO. The surface-modified material (LNMO@LIR) has higher reversible capacity with better cycle stability than LNMO. The LNMO@LIR delivers a discharge capacity of 128.32 mAh g−1 at 0.5 °C, and the capacity retention rate is up to 97.2% after 300 cycles. This work indicates that LIR coating can efficiently enhance the electrochemical performance of LNMO.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Ten years left to redesign lithium-ion batteries Reserves of rare metals used in electric-vehicle cells are dwindling, so boost research on iron and silicon alternatives, urge Kostiantyn Turcheniuk and colleagues. Nature 559, pp. 467–470, (2018).

    CAS  Google Scholar 

  2. 2.

    T. Kim, W.T. Song, D.Y. Son, L.K. Ono, Y.B. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7, pp. 2942–2964, (2019).

    CAS  Google Scholar 

  3. 3.

    L.L. Wang, B.B. Chen, J. Ma, G.L. Cui, L.Q. Chen, Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 47, pp. 6505–6602, (2018).

    CAS  Google Scholar 

  4. 4.

    L.M. Wu, J. Zhang, Finite element study on lithium diffusion and intercalation-induced stress in polycrystalline LiCoO2 using anisotropic material properties. J. Electrochem. Energy Convers. Storage 16, p. 5, (2019).

    Google Scholar 

  5. 5.

    W. Wang, Y.F. Wu, An overview of recycling and treatment of spent LiFePO4 batteries in China. Resour. Conserv. Recycl. 127, pp. 233–243, (2017).

    Google Scholar 

  6. 6.

    J.T. Hu, J.X. Zheng, F. Pan, Research progress into the structure and performance of LiFePO4 cathode materials. Acta Phys. 35, pp. 361–370, (2019).

    Google Scholar 

  7. 7.

    P. Peng, Z. Fang, Y.-R. Zhu, Y. Xie, S. Luo, Carbon-coated LiMn1 – xFexPO4 (0 ≤ x ≤ 0.5) nanocomposites as high-performance cathode materials for Li-ion battery. Compos. Part B 175, p. 107067, (2019).

    Google Scholar 

  8. 8.

    J.Q. Deng, L.J. Xi, L.H. Wang, Z.M. Wang, C.Y. Chung, X.D. Han, H.Y. Zhou, Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 thin film electrodes prepared by pulsed laser deposition. J. Power Sour. 217, pp. 491–497, (2012).

    CAS  Google Scholar 

  9. 9.

    W.A. Appiah, J. Park, S. Song, S. Byun, M.H. Ryou, Y.M. Lee, Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells based on simulation and experimental data. J. Power Sour. 319, pp. 147–158, (2016).

    CAS  Google Scholar 

  10. 10.

    X. Qin, J.J. Gong, J.L. Guo, B. Zong, M.S. Zhou, L. Wang, G.C. Liang, Synthesis and performance of LiNi0.5Mn1.5O4 cathode materials with different particle morphologies and sizes for lithium-ion battery. J. Alloys Compd. 786, pp. 240–249, (2019).

    CAS  Google Scholar 

  11. 11.

    T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, M.F. Ye, High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultrahigh power positive-electrode material for lithium-ion batteries. J. Power Sour. 211, pp. 59–65, (2012).

    CAS  Google Scholar 

  12. 12.

    S.Y. Zhou, T. Mei, X.B. Wang, Y.T. Qian, Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. Nanoscale 10, pp. 17435–17455, (2018).

    CAS  Google Scholar 

  13. 13.

    L. Liu, P.J. Guan, C.H. Liu, Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries. J. Electrochem. Soc. 164, pp. A3163–A3173, (2017).

    CAS  Google Scholar 

  14. 14.

    J. Xiao, X. Chen, P.V. Sushko, M.L. Sushko, L. Kovarik, J. Feng, Z. Deng, J. Zheng, G.L. Graff, Z. Nie, D. Choi, J. Liu, J.-G. Zhang, M.S. Whittingham, High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater. 24, pp. 2109–2116, (2012).

    CAS  Google Scholar 

  15. 15.

    A. Manthiram, K. Chemelewski, E.S. Lee, A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 7, pp. 1339–1350, (2014).

    CAS  Google Scholar 

  16. 16.

    M.D.W. Shin, C.A. Bridges, A. Huq, M.P. Paranthaman, A. Manthiram, Role of cation ordering and surface-segregation in high-voltage spinel LiMn1.5Ni0.5–xMxO4 (M = Cr, Fe, and Ga) cathodes for lithium-ion batteries. Chem. Mater. 24, pp. 3720–3731, (2012).

    CAS  Google Scholar 

  17. 17.

    Z.H. Xiao, Q.Q. Cui, X.L. Li, H.L. Wang, Q. Zhou, Ionothermal synthesis for Mg-doped LiMn1.5Ni0.5O4 spinel with structural stability and high-rate performance. Ionics 21, pp. 1261–1267, (2015).

    CAS  Google Scholar 

  18. 18.

    J. Liu, A. Manthiram, Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J. Phys. Chem. C 113, pp. 15073–15079, (2009).

    CAS  Google Scholar 

  19. 19.

    T.F. Yi, Y. Xie, M.F. Ye, L.J. Jiang, R.S. Zhu, Y.R. Zhu, Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics 17, pp. 383–389, (2011).

    CAS  Google Scholar 

  20. 20.

    F.U. Okudur, J. D’Haen, T. Vranken, D. De Sloovere, M. Verheijen, O.M. Karakulina, A.M. Abakumov, J. Hadermann, M.K. Van Bael, A. Hardy, Ti surface doping of LiNi0.5Mn1.5O4-delta positive electrodes for lithium ion batteries. RSC Adv. 8, pp. 7287–7300, (2018).

    Google Scholar 

  21. 21.

    G.Q. Liu, J.Y. Zhang, X.H. Zhang, Y.L. Du, K. Zhang, G.C. Li, H. Yu, C.W. Li, Z.Y. Li, Q. Sun, L. Wen, Study on oxygen deficiency in spinel LiNi0.5Mn1.5O4 and its Fe and Cr-doped compounds. J. Alloys Compd. 725, pp. 580–586, (2017).

    CAS  Google Scholar 

  22. 22.

    H.Y. Sun, X. Kong, B.S. Wang, T.B. Luo, G.Y. Liu, Cu doped LiNi0.5Mn1.5–xCuxO4 (x = 0, 0.03, 0.05, 0.10, 0.15) with significant improved electrochemical performance prepared by a modified low temperature solution combustion synthesis method. Ceram. Int. 44, pp. 4603–4610, (2018).

    CAS  Google Scholar 

  23. 23.

    H.Y. Sun, X. Kong, B.S. Wang, T.B. Luo, G.Y. Liu, LiNi0.5Mn1.45Zn0.05O4 with excellent electrochemical performance for lithium ion batteries. Int. J. Electrochem. Sci. 12, pp. 8609–8621, (2017).

    CAS  Google Scholar 

  24. 24.

    Y.L. Liu, J. Li, M. Zeng, Y.J. Huang, X. Xu, M. Yan, J.Q. Guo, J.N. Deng, J.Z. Yang, Octahedral nano-particles constructed LiNi0.5Mn1.5O4 microspheres as high-voltage cathode materials for long-life lithium-ion batteries. Ceram. Int. 44, pp. 20043–20048, (2018).

    CAS  Google Scholar 

  25. 25.

    Y. Wu, J.T. Zhang, C.B. Cao, S. Khalid, Q.Q. Zhao, R. Wang, F.K. Butt, LiNi0.5Mn1.5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries. Electrochim. Acta 230, pp. 293–298, (2017).

    CAS  Google Scholar 

  26. 26.

    X.L. Zhang, F.Y. Cheng, J.G. Yang, J. Chen, LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for li-ion batteries. Nano Lett. 13, pp. 2822–2825, (2013).

    CAS  Google Scholar 

  27. 27.

    H. Zhao, F. Li, X. Shu, J. Liu, T. Wu, Z. Wang, Y. Li, J. Su, Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties. Ceram. Int. 44, pp. 20575–20580, (2018).

    CAS  Google Scholar 

  28. 28.

    Y. Cai, S.-Z. Huang, F.-S. She, J. Liu, R.-L. Zhang, Z.-H. Huang, F.-Y. Wang, H.-E. Wang, Facile synthesis of well-shaped spinel LiNi0.5Mn1.5O4 nanoparticles as cathode materials for lithium ion batteries. RSC Adv. 6, pp. 2785–2792, (2016).

    CAS  Google Scholar 

  29. 29.

    H.F. Deng, P. Nie, H.F. Luo, Y. Zhang, J. Wang, X.G. Zhang, Highly enhanced lithium storage capability of LiNi0.5Mn1.5O4 by coating with Li2TiO3 for Li-ion batteries. J. Mater. Chem. A 2, pp. 18256–18262, (2014).

    CAS  Google Scholar 

  30. 30.

    J.G. Li, Y.Y. Zhang, J.J. Li, L. Wang, X.M. He, J. Gao, AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries. Ionics 17, pp. 671–675, (2011).

    CAS  Google Scholar 

  31. 31.

    F.Q. Cheng, Y.L. Xin, Y.Y. Huang, J.T. Chen, H.H. Zhou, X.X. Zhang, Enhanced electrochemical performances of 5 V spinel LiMn1.58Ni0.42O4 cathode materials by coating with LiAlO2. J. Power Sour. 239, pp. 181–188, (2013).

    CAS  Google Scholar 

  32. 32.

    Q. Chang, A.J. Wei, W. Li, X. Bai, L.H. Zhang, R. He, Z.F. Liu, Structural and electrochemical characteristics of Al2O3-modified LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Ceram. Int. 45, pp. 5100–5110, (2019).

    CAS  Google Scholar 

  33. 33.

    A. Wang, N. Bai, Improved electrochemical cycling performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials by coating with spinel MgAl2O4. Solid State Ion. 336, pp. 19–25, (2019).

    CAS  Google Scholar 

  34. 34.

    H. Wang, L. Ben, H. Yu, Y. Chen, X. Yang, X. Huang, Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. J. Mater. Chem. A 5, pp. 822–834, (2017).

    CAS  Google Scholar 

  35. 35.

    J.Y. Shi, C.-W. Yi, K. Kim, Improved electrochemical performance of AlPO4-coated LiMn1.5Ni0.5O4 electrode for lithium-ion batteries. J. Power Sour. 195, pp. 6860–6866, (2010).

    CAS  Google Scholar 

  36. 36.

    R.L. Patel, S.A. Palaparty, X.H. Liang, Ultrathin conductive CeO2 coating for significant improvement in electrochemical performance of LiMn1.5Ni0.5O4 cathode materials. J. Electrochem. Soc 164, pp. A6236–A6243, (2017).

    CAS  Google Scholar 

  37. 37.

    J.R. Mou, Y.L. Deng, L.H. He, Q.J. Zheng, N. Jiang, D.M. Lin, Critical roles of semi-conductive LaFeO3 coating in enhancing cycling stability and rate capability of 5 V LiNi0.5Mn1.5O4 cathode materials. Electrochim. Acta 260, pp. 101–111, (2018).

    CAS  Google Scholar 

  38. 38.

    T.-F. Yi, X.-Y. Li, Y. Xie, S. Luo, Improved rate performance of LiNi0.5Mn1.5O4 as cathode of lithium-ion battery by Li0.33La0.56TiO3 coating. Mater. Lett. 239, pp. 56–58, (2019).

    Google Scholar 

  39. 39.

    P. Rozier, J.M. Tarascon, Review-Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, pp. A2490–A2499, (2015).

    CAS  Google Scholar 

  40. 40.

    R. Singhal, J.J. Saavedraaries, R. Katiyar, Y. Ishikawa, M.J. Vilkas, S.R. Das, M.S. Tomar, R.S. Katiyar, Spinel LiMn2 – xNixO4 cathode materials for high energy density lithium ion rechargeable batteries. J. Renew. Sustain. Energy 1, p. 461, (2009).

    Google Scholar 

  41. 41.

    B. Chen, B. Zhao, J. Zhou, J. Song, Z. Fang, J. Dai, X. Zhu, Y. Sun, Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials through facile layered/spinel phase tuning. J. Solid State Electrochem. 22, pp. 2587–2596, (2018).

    CAS  Google Scholar 

  42. 42.

    J.-H. Kim, S.-T. Myung, C.S. Yoon, S.G. Kang, Y. Sun, Comparative study of LiNi0.5Mn1.5O4–δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3̄m and P4332. Cheminform 35, pp. 906–914, (2004).

    Google Scholar 

  43. 43.

    Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, G. Yan, J. Wang, Mg doping and zirconium oxyfluoride coating co-modification to enhance the high-voltage performance of LiCoO2 for lithium ion battery. J. Alloys Compd. 621, pp. 212–219, (2015).

    CAS  Google Scholar 

  44. 44.

    J. Zeng, Y. Liu, J. Wu, Y. Cui, A. Baker, D. Qu, H. Zhang, M. Lavorgna, X. Zhang, Enhanced lithium diffusion of layered lithium-rich oxides with LixMn1.5Ni0.5O4 nanoscale surface coating. Electrochim. Acta 247, pp. 617–625, (2017).

    CAS  Google Scholar 

  45. 45.

    Z. Sun, L. Xu, C. Dong, H. Zhang, M. Zhang, Y. Ma, Y. Liu, Z. Li, Y. Zhou, Y. Han, Y. Chen, A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy 63, p. 103887, (2019).

    CAS  Google Scholar 

  46. 46.

    S.-K. Hong, S.-I. Mho, I.-H. Yeo, Y. Kang, D.-W. Kim, Structural and electrochemical characteristics of morphology-controlled Li[Ni0.5Mn1.5]O4 cathodes. Electrochim. Acta 156, pp. 29–37, (2015).

    CAS  Google Scholar 

  47. 47.

    X.Y. Zheng, W.J. Liu, Q.T. Qu, Q. Shi, H.H. Zheng, Y.H. Huang, Effectively stabilizing 5 V spinel LiNi0.5Mn1.5O4 cathode in organic electrolyte by polyvinylidene fluoride coating. Appl. Surf. Sci. 455, pp. 349–356, (2018).

    CAS  Google Scholar 

Download references


This work was supported by National Key Research and Development Program of China (2018YFB0104204).

Author information



Corresponding author

Correspondence to Jing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Liu, Y., Tang, X. et al. Improve electrochemical performance of spinel LiNi0.5Mn1.5O4 via surface modified by Li1.2Ni0.2Mn0.6O2 layered materials. J Mater Sci: Mater Electron 31, 4336–4344 (2020).

Download citation