Low-temperature sintering and microwave dielectric properties of Li2Mg3ZrO6 ceramics derived from high-energy ball milling

Abstract

The effects of synthesis temperature, milling time and dwell time on phase formation and phase constitutes of Li2CO3–MgO–ZrO2 mixtures were investigated by high-energy ball milling (HEBM). The Li2Mg3ZrO6 (LMZ) nanopowders were obtained from the mixtures by HEBM 20 h and calcined at 900 °C for 2 h, 300 °C lower than that required by a conventional ball milling method. The sintering characteristics, microstructures and microwave dielectric properties of Li2Mg3ZrO6 ceramics doped with x wt% LiF (0 ≤ x ≤ 8) were investigated. Addition of 6 wt% LiF reduced the sintering temperature of Li2Mg3ZrO6 ceramics to 850 °C, with the fantastic microwave dielectric properties: εr = 12.94, Q f = 131,420 GHz, τf =  − 35.84 ppm/°C. The good effect of LiF on sintering process is due to substitution of F for O2− and liquid-sintered process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    G. Subodh, M.T. Sebastian, Microwave dielectric properties of Sr2Ce2Ti5O16 ceramics. Mater. Sci. Eng. B. 136, 50 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    K.P. Surendran, M.T. Sebastian, Low loss dielectrics in Ba[(Mg1/3Ta2/3)1−xTix]O3 and Ba[(Mg1−xZnx)1/3Ta2/3]O3 systems. J. Mater. Res. 20, 2919 (2005)

    CAS  Article  Google Scholar 

  3. 3.

    Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, H.W. Zhang, Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 36, 625 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    X.J. Bai, P. Liu, Z.F. Fu, Q.Q. Feng, L.P. Zhao, LiAlW2O8: a novel temperature stable low-firing microwave dielectric ceramic. Mater. Lett. 178, 68 (2016)

    CAS  Article  Google Scholar 

  5. 5.

    Y.H. Zhang, J.J. Sun, N. Dai, Z.C. Wu, H.T. Wu, C.H. Yang, Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J. Eur. Ceram. Soc. 39, 1127 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Y.H. Zhang, H.T. Wu, Crystal structure and microwave dielectric properties of La2(Zr1−xTix)3(MoO4)9 (0 ≤ x ≤ 0.1) ceramics. J. Am. Ceram. Soc. 102, 4092 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    H.H. Guo, D. Zhou, L.X. Pang, Z.M. Qi, Microwave dielectric properties of low firing temperature stable scheelite structured (Ca, Bi)(Mo, V)O4 solid solution ceramics for LTCC applications. J. Eur. Ceram. Soc. 39, 2365 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    J. Song, J. Zhang, R.Z. Zuo, Ultrahigh Q values and atmosphere-controlled sintering of Li2(1+x)Mg3ZrO6 microwave dielectric ceramics. Ceram. Int. 43, 2246 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    L. Cheng, H.L. Pan, M.F. Li, F. Ling, H.T. Wu, Microwave dielectric properties of Li2Mg3ZrO6 ceramics doped with LiF for LTCC applications. J. Mater. Sci. 28, 14901 (2017)

    CAS  Google Scholar 

  10. 10.

    R.Z. Zuo, J. Zhang, J. Song, Y.D. Xu, Liquid-phase sintering, microstructural evolution, and microwave dielectric properties of Li2Mg3SnO6–LiF ceramics. J. Am. Ceram. Soc. 101, 569 (2018)

    CAS  Article  Google Scholar 

  11. 11.

    Y.X. Mao, H.L. Pan, Y.W. Zhang, Q.Q. Liu, H.T. Wu, Effects of LiF addition on the sintering behavior and microwave dielectric properties of Li2Mg3SnO6 ceramics. J. Mater. Sci. 28, 13278 (2017)

    CAS  Google Scholar 

  12. 12.

    S.B. Kim, S.J. Kim, C.H. Kim, W.S. Kim, K.W. Park, Nanostructure cathode materials prepared by high-energy ball milling method. Mater. Lett. 65, 3313 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    Z.F. Fu, P. Liu, X.M. Chen, J.L. Ma, H.W. Zhang, Low-temperature synthesis of Mg4Nb2O9 nanopowders by high-energy ball-milling method. J. Alloys Compd. 493, 441 (2010)

    CAS  Article  Google Scholar 

  14. 14.

    L. Cheng, P. Liu, X.M. Chen, W.C. Niu, G.G. Yao, C. Liu, X.G. Zhao, Q. Liu, H.W. Zhang, Fabrication of nanopowders by high energy ball milling and low temperature sintering of Mg2SiO4 microwave dielectrics. J. Alloys Compd. 513, 373 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    C. Liu, P. Liu, Microstructure and dielectric properties of BST ceramics derived from high-energy ball-milling. J. Alloys Compd. 584, 114 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    Z.F. Fu, P. Liu, J.L. Ma, Fabrication nanopowders by high-energy ball-milling and low temperature sintering Li2TiO3 microwave dielectrics. Mater. Sci. Eng. B. 193, 32 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    L. Cheng, P. Liu, S.X. Qu, L. Chen, H.W. Zhang, Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method. J. Alloys Compd. 623, 238 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    P. Ruan, P. Liu, B.C. Guo, F. Li, Z.F. Fu, Low temperature reaction-sintering and microwave dielectric properties of ZnO–Nb2O5–2TiO2 ceramics. J. Mater. Sci. 27, 10622 (2016)

    CAS  Google Scholar 

  19. 19.

    Y.Z. Hao, H. Yang, G.H. Chen, Q.L. Zhang, Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloys Compd. 552, 173 (2013)

    CAS  Article  Google Scholar 

  20. 20.

    Y. Iida, Evaporation of lithium oxide from solid solution of lithium oxide in nickel oxide. J. Am. Ceram. Soc. 43, 171 (1960)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Iida, Time dependence of NiO-Li2O solid solution formation. J. Am. Ceram. Soc. 43, 117 (1960)

    CAS  Article  Google Scholar 

  22. 22.

    J.X. Bi, C.F. Xing, X.S. Jiang, C.H. Yang, H.T. Wu, Characterization and microwave dielectric properties of new low loss Li2MgZrO4. Mater. Lett. 184, 269 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    Y.B. Chen, Dielectric properties and crystal structure of La(Mg1/2Ti1/2)O3 ceramics with Mg2+ substituted by Co2+. J. Alloys Compd. 509, 9226 (2011)

    CAS  Article  Google Scholar 

  24. 24.

    G. Wang, D.N. Zhang, Y.M. Lai, X. Huang, Y. Yang, G.W. Gan, F. Xu, Q.Q. Wang, J. Li, C. Liu, Ultralow loss and temperature stability of Li3Mg2NbO6-xLiF ceramics with low sintering temperature. J. Alloys Compd. 782, 370 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    Z.F. Fu, P. Liu, J.L. Ma, X.M. Chen, H.W. Zhang, New high Q low-fired Li2Mg3TiO6 microwave dielectric ceramics with rock salt structure. Mater. Lett. 164, 436 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    C.F. Xing, F.L. Liu, J.X. Bi, H.T. Wu, Low-temperature sintering and microwave dielectric properties of LiF doped 0.2Li2ZrO3–08MgO ceramics, J. Mater. Sci. 29, 13746 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51572162, 51602005), the Natural Science Foundation in Anhui Province of China (Grant No. 1908085ME116) and the Fundamental Research Funds for the Central Universities (No. 1301031339).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, S., Liu, P., Zhao, L. et al. Low-temperature sintering and microwave dielectric properties of Li2Mg3ZrO6 ceramics derived from high-energy ball milling. J Mater Sci: Mater Electron 31, 4253–4260 (2020). https://doi.org/10.1007/s10854-020-02978-8

Download citation