Structural and dielectric behavior of Al-substituted CaCu3Ti4O12 ceramics with giant dielectric constant by spark plasma sintering

Abstract

The influence of Al substitution on the structural and dielectric properties of CaCu3Ti4−xAlxO12 (CCTAO, 0 ≤ x ≤ 0.09) has been investigated. CCTAO ceramics were prepared by spark plasma sintering (SPS) for 10 min at 975 °C of their precursor powders obtained by mechanochemical milling. X-ray diffraction and scanning electron microscopy revealed cubic crystal structure and an average grain size in the range ~ 300–550 nm for the prepared ceramics. Though the smaller grain size of SPS CCTAO compared to previously reported grain sizes for CCTO-related ceramics prepared by solid state reaction, SPS CCTAO samples exhibited giant dielectric constant values in the range 103–104 at room temperature and 10 kHz. Complex impedance spectroscopy measurements revealed an electrically heterogeneous structure for the investigated ceramics. Three types of dielectric responses were detected in the modulus spectrum of the samples. These responses were attributed to grains, domain-boundaries (DBs) and grain-boundaries (GBs) interfaces. These results indicated that the giant dielectric constant of the SPS CCTAO ceramics is closely related to Maxwell–Wagner polarization at DBs and GBs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323–325 (2000)

    CAS  Article  Google Scholar 

  2. 2.

    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153–2155 (2002)

    CAS  Article  Google Scholar 

  3. 3.

    T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129–3135 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, M.A. Subramanian, A.P. Ramirez, Phys. Rev. B 67(092106), 1–4 (2003)

    Google Scholar 

  5. 5.

    S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, Nat. Mater. 10, 899–901 (2011)

    CAS  Article  Google Scholar 

  6. 6.

    T.-T. Fang, L.-T. Mei, J. Am. Ceram. Soc. 90, 638–664 (2007)

    CAS  Article  Google Scholar 

  7. 7.

    J.-C. Zheng, A.I. Frenkel, L. Wu, J. Hanson, W. Ku, E.S. Božin, S.J.L. Billinge, Y. Zhu, Phys. Rev. B 81(144203), 1–19 (2010)

    Google Scholar 

  8. 8.

    J.T. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)

    CAS  Article  Google Scholar 

  9. 9.

    R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    CAS  Article  Google Scholar 

  10. 10.

    B.S. Prakash, K.B.R. Varma, J. Phys. Chem. Solids 68, 490–502 (2007)

    CAS  Article  Google Scholar 

  11. 11.

    S.D. Hutagalung, M.I.M. Ibrahim, Z.A. Ahmad, Ceram. Int. 34, 939–942 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    J.Y. Li, X.T. Zhao, S.T. Li, M.A. Alim, J. Appl. Phys. 108(104104), 1–6 (2010)

    Google Scholar 

  13. 13.

    M.M. Ahmad, K. Yamada, J. Appl. Phys. 115(154103), 1–6 (2014)

    Google Scholar 

  14. 14.

    P. Thongbai, S. Maensiri, T. Yamwong, R. Yimnirun, J. Appl. Phys. 103(114107), 1–6 (2008)

    Google Scholar 

  15. 15.

    W.-X. Yuan, S.K. Hark, J. Eur. Ceram. Soc. 32, 465–470 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    J.A. Cortés, G. Cotrim, S. Orrego, A.Z. Simões, M.A. Ramírez, J. Alloys Compd. 735, 140–149 (2018)

    Article  Google Scholar 

  17. 17.

    J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. 39, 1057–1064 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    R. Xue, G. Zhao, J. Chen, Z. Chen, D. Liu, Mater. Res. Bull. 76, 124–132 (2016)

    CAS  Article  Google Scholar 

  19. 19.

    L. Tang, F. Xue, P. Guo, Z. Xin, Z. Luo, W. Li, Ceram. Int. 44, 18535–18540 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    R. Jia, X. Zhao, J. Li, X. Tang, Mater. Sci. Eng., B 185, 79–85 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    M.F. Ab Rahman, S.D. Hutagalung, Z.A. Ahmad, M.F. Ain, J.J. Mohamed, J. Mater. Sci.: Mater. Electron. 26, 3947–3956 (2015)

    CAS  Google Scholar 

  22. 22.

    G. Du, F. Wei, W. Li, N. Chen, J. Eur. Ceram. Soc. 37, 4653–4659 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    S.W. Choi, S.H. Hong, Y.M. Kim, J. Am. Ceram. Soc. 90, 4009–4011 (2007)

    CAS  Google Scholar 

  24. 24.

    L. Shengtao, W. Hui, L. Chunjiang, Y. Yang, L. Jianying, in Proceedings of 2011 International Conference on Electrical Insulating Materials (ISEIM) (IEEE, 2011), pp. 23–26

  25. 25.

    B. Li, X. Wang, L. Li, H. Zhou, X. Liu, X. Han, Y. Zhang, X. Qi, X. Deng, Mater. Chem. Phys. 83, 23–28 (2004)

    CAS  Article  Google Scholar 

  26. 26.

    E.A. Olevsky, S. Kandukuri, L. Froyen, J. Appl. Phys. 102(114913), 1–12 (2007)

    Google Scholar 

  27. 27.

    C.L. Song, Y.J. Wu, X.Q. Liu, X.M. Chen, J. Alloys Compd. 490, 605–608 (2010)

    CAS  Article  Google Scholar 

  28. 28.

    J.O. Herrera Robles, C.A. Rodríguez González, S.D. de la Torre, L.E. Fuentes Cobas, P.E. García Casillas, H. Camacho Montes, J. Alloys Compd. 536, S511–S515 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    M.M. Ahmad, Ceram. Int. 41, 6398–6408 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    H. Lin, X. He, Y. Gong, D. Pang, Z. Yi, Ceram. Int. 44, 8650–8655 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    R. Kumar, M. Zulfequar, T.D. Senguttuvan, J. Mater. Sci.: Mater. Electron. 27, 5233–5237 (2016)

    CAS  Google Scholar 

  32. 32.

    S.I.R. Costa, M. Li, J.R. Frade, D.C. Sinclair, RSC Adv. 3, 7030–7036 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    M.M. Ahmad, Appl. Phys. Lett. 102(232908), 1–4 (2013)

    Google Scholar 

  34. 34.

    J. Jumpatam, B. Putasaeng, N. Chanlek, P. Kidkhunthod, P. Thongbai, S. Maensiri, P. Chindaprasirt, RSC Adv. 7, 4092–4101 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    C. Wang, W. Ni, D. Zhang, X. Sun, J. Wang, H. Li, N. Zhang, J. Electroceram. 36, 46–57 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    E. Abram, D. Sinclair, A. West, J. Electroceram. 10, 165–177 (2003)

    CAS  Article  Google Scholar 

  37. 37.

    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  38. 38.

    J. Li, L. Hou, R. Jia, L. Gao, K. Wu, S. Li, J. Mater. Sci.: Mater. Electron. 26, 5085–5091 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Deanship of Scientific Research in King Faisal University (Saudi Arabia) for funding for this research under Grant No. 186146.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Mahfoz Kotb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotb, H.M., Ahmad, M.M., Aldabal, S. et al. Structural and dielectric behavior of Al-substituted CaCu3Ti4O12 ceramics with giant dielectric constant by spark plasma sintering. J Mater Sci: Mater Electron 30, 18259–18267 (2019). https://doi.org/10.1007/s10854-019-02180-5

Download citation