Novel g-C3N4/TiO2 nanorods with enhanced photocatalytic activity for water treatment and H2 production

Abstract

The g-C3N4 was peeled off into nanosheets structure by ultrasonic, and then combined with TiO2 nanorods, the obtained composite was subjected to secondary high-temperature calcination to obtain a photocatalyst with smaller interfacial spacing, high photoelectron transfer rate and high photocatalytic performance. The structure was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectrometry, Fourier transform infrared (FTIR) spectroscopy. It was found that g-C3N4 in the form of nanosheets was uniformly attached to the surface of TiO2 nanorods. UV–Vis diffuse reflection spectra (UV–Vis) and Photoluminescence (PL) spectra were obtained to confirm that full coverage of the ultraviolet region to the visible region was achieved and the recombination of photogenerated electron–hole pairs was effectively inhibited. Degradation experiments and hydrogen evolution experiments showed that the composites photocatalytic properties were enhanced. The degradation rate of rhodamine B (RhB) at 35 min is achieved 98.5%, hydrogen production rate as high as 150 umol/g/h. The catalyst has very good photocatalytic stability. The research in this paper has an important impact on the photocatalytic preparation of hydrogen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, Y. Liu, Nanoscale 8, 11034–11043 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Li, X. Feng, Z. Lu, H. Yin, F. Liu, Q. Xiang, J. Colloid Interface Sci. 513, 866–876 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    S. Sun, M. Sun, Y. Fang, Y. Wang, H. Wang, RSC Adv. 6, 13063–13701 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    L. Liang, L. Shi, F. Wang, L. Yao, Y. Zhang, Int. J. Hydrogen Energy 44, 1631–16326 (2019)

    Google Scholar 

  5. 5.

    Z. Mo, H. Xu, X. She, Y. Song, P. Yan, J. Yi, X. Zhu, Y. Lei, S. Yuan, H. Li, Appl. Surf. Sci. 467, 151–157 (2019)

    Article  Google Scholar 

  6. 6.

    N. Fajrina, M. Tahir, Appl. Surf. Sci. 471, 1053–1064 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    L. Shi, F. Wang, J. Sun, Mater. Res. Bull. 113, 115–121 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    H. Yan, H. Yang, J. Alloy. Compd. 509, 126–129 (2011)

    Google Scholar 

  9. 9.

    L. Ling, L. Liu, Y. Feng, J. Zhu, Z. Bian, Chin. J. Catal. 39, 639–645 (2018)

    CAS  Article  Google Scholar 

  10. 10.

    D. Monga, S. Basu, Adv. Powder Technol. (2019). https://doi.org/10.1016/j.apt.2019.03.004

    Article  Google Scholar 

  11. 11.

    H.D. Safajou, H. Khojasteh, M. Salavati-Niasari, J. Colloid Interface Sci. 498, 423–432 (2017)

    CAS  Article  Google Scholar 

  12. 12.

    Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Appl. Catal. B 232, 19–25 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    Z. Jiang, C. Zhu, W. Wan, K. Qian, J. Xie, J. Mater. Chem. A 4, 1806–1818 (2016)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Yang, Y. Li, J. Wang, Y. Zhang, D. He, J. Wu, H. Dai, RSC Adv. 5, 50833–50842 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    H. Gao, J. Jia, F. Guo, B. Li, D. Dai, X. Deng, X. Liu, C. Si, G. Liu, J. Photochem. Photobiol. A 364, 328–335 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    L. Al-Hajji, A. Ismail, M.F. Atitar, I. Abdelfattah, A.M. El-Ton, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2018.10.009

    Article  Google Scholar 

  17. 17.

    G. Zhang, T. Zhang, B. Li, S. Jiang, X. Zhang, L. Hai, X. Chen, W. Wu, Appl. Surf. Sci. 433, 963–974 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Xia, L. Xu, J. Peng, J. Han, S. Guo, L. Zhang, Z. Han, S. Komarneni, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.06.118

    Article  Google Scholar 

  19. 19.

    C. Liu, S.S. Dong, Y. Chen. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.04.089

    Article  Google Scholar 

  20. 20.

    P. Kumar, R. Boukherroub, K, Shankar. J. Mater. Chem. A 6, 12876–12931 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    H. Bashira, X. Yi, J. Yuan, K. Yin, S. Luo, J. Photochem. Photobiol. A 382, 111930 (2019)

    Article  Google Scholar 

  22. 22.

    A. Rathi, H. Kmentová, A. Naldoni, A. Goswami, M.B. Gawande, R.S. Varma, Š. Kment, R. Zbořil 1, 2526–2535 (2019)

    Google Scholar 

  23. 23.

    P. Kumar, U. Kumar Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patela, K. Shankar, Carbon 137, 174–187 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    S.P. Adhikari, G.P. Awasthi, J. Lee, C.H. Park, C.S. Kim, RSC Adv. 6, 55079–55091 (2016)

    CAS  Article  Google Scholar 

  25. 25.

    J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang, Y. Liu, J. Zhang, Dalton Trans. 48, 3486–3495 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    O. Elbanna, M. Fujitsuka, T. Majima, ACS Appl. Mater. Interfaces 9, 34844–34854 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    A. Tripathi, S. Narayanan, Environ. Nanotech. monitoring & management 10, 280–291 (2018)

    Article  Google Scholar 

  28. 28.

    L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Appl. Surf. Sci. 430, 263–272 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    W. Gu, F. Lu, C. Wang, S. Kuga, L. Wu, Y. Huang, M. Wu, A.C.S. Appl, Mater. Interfaces 9, 28674–28684 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    C. Li, Z. Lou, Y. Wang, Y. Lu, Z. Ye, L. Zhu, Langmuir 35, 779–786 (2019)

    CAS  Article  Google Scholar 

  31. 31.

    G. Li, Z. Lian, W. Wang, D. Zhang, H. Li, Nano Energy 19, 446–454 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    J. Song, X. Wang, J. Ma, X. Wang, J. Wang, S. Xia, J. Zhao, Chem. Eng. J. 348, 380–388 (2018)

    CAS  Article  Google Scholar 

  33. 33.

    W. Tao, M. Wang, R. Ali, S. Nie, Q. Zeng, R. Yang, W.M. Lau, L. He, H. Tang, X. Jian, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.07.177

    Article  Google Scholar 

  34. 34.

    Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Appl. Catal. B 232, 19–25 (2018)

    CAS  Article  Google Scholar 

  35. 35.

    J. Wang, J. Huang, H. Xie, A. Qu, Int. J. Hydrogen Energy 39, 6354–6363 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    L. Chen, X. Zhou, B. Jin, J. Luo, X. Xu, L. Zhang, Y. Hong, Int. J. Hydrog. Energy. 41, 7292–7300 (2016)

    CAS  Article  Google Scholar 

  37. 37.

    N.A. Guo, Y. Zeng, H. Li, X. Xu, H. Yu, X. Han, J. Hazard. Mater. 353, 80–88 (2018)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Key Project from Education Department of Henan Province (16A430003), Natural Science Project from Science and Technology Department of Henan Province (172102210231) and Science Foundation of Henan University of Technology (2014YWQN04, 2013JCYJ07, 2014BS007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haowei Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Zhao, L. Novel g-C3N4/TiO2 nanorods with enhanced photocatalytic activity for water treatment and H2 production. J Mater Sci: Mater Electron 30, 18191–18199 (2019). https://doi.org/10.1007/s10854-019-02173-4

Download citation