Self-enhanced electrochemical properties of Ni–P nanosphere with heterogeneous Ni and Ni–P nanoflake outer layer anchored on carbon cloth for asymmetric all-solid-state supercapacitors

Abstract

To meet the demand for high-power-density and long lifespan surpercapacitors (SCs), the Ni–P@Ni HL/CC-1h with a core–shell structure (Ni–P sphere as the core and nanoflake with the Ni and Ni–P heterogeneous layer as shell) was constructed via a facile strategy. The strategy included hydrothermal synthesis of Ni–P spheres with large Ni surface layer on carbon cloth (Ni–P@Ni HL/CC) and subsequent chemical dealloying using HCl as etching solution in order to remove the redundant Ni substances. The morphology, composition, and electrochemical performances of raw Ni–P@Ni HL/CC and the corresponding samples obtained by different dealloying times (0.5, 1, and 2 h) were characterized. Interestingly, the Ni–P@Ni HL/CC-1h presents a unique structure with a nanoflake shell and a porous core, which can provide a large number of exposed active sites, accelerate electrolyte ion diffusion and support ultra-long cycling. Furthermore, the Ni species existing in the outer flake can increase the conductivity and promote the capacitance during the charge–discharge processes. The Ni–P@Ni HL/CC-1h exhibited high specific capacity of 280.8 C g−1 at current density of 1 mA cm−2, high rate retention of 76.2% at 20 mA cm−2. The maximum specific capacity could reach 388.8 C g−1 at 8 mA cm−2, and maintained the 92.6% retention after 3000 cycles. Moreover, the Ni–P@Ni HL/CC-1h//AC all-solid-state asymmetric supercapacitor (ASC) exhibited high specific capacity, 86.0% retention after 10,000 cycles and high energy density of 27.6 Wh kg−1 at power density of 942.8 W kg−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Y. Chen, B. Xu, J. Wen et al., Small 14, e1704373 (2018). https://doi.org/10.1002/smll.201704373

    CAS  Article  Google Scholar 

  2. 2.

    J. Xu, Y. Sun, M. Lu et al., Chem. Eng. J. 334, 1466 (2018). https://doi.org/10.1016/j.cej.2017.11.085

    CAS  Article  Google Scholar 

  3. 3.

    J. Huang, J. Wei, Y. Xiao et al., ACS Nano 12, 3030 (2018). https://doi.org/10.1021/acsnano.8b00901

    CAS  Article  Google Scholar 

  4. 4.

    S. Xie, J. Gou, J. Alloys Compd. 713, 10 (2017). https://doi.org/10.1016/j.jallcom.2017.04.170

    CAS  Article  Google Scholar 

  5. 5.

    D. Wang, L.-B. Kong, M.-C. Liu, W.-B. Zhang, Y.-C. Luo, L. Kang, J. Power Sources 274, 1107 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.179

    CAS  Article  Google Scholar 

  6. 6.

    T.T. Nguyen, J. Balamurugan, N.H. Kim, J.H. Lee, J. Mater. Chem. A 6, 8669 (2018). https://doi.org/10.1039/c8ta01184b

    CAS  Article  Google Scholar 

  7. 7.

    D.H. Shin, J.S. Lee, J. Jun, J. Jang, J. Mater. Chem. A 2, 3364 (2014). https://doi.org/10.1039/c3ta14900e

    CAS  Article  Google Scholar 

  8. 8.

    H. Liang, C. Xia, Q. Jiang, A.N. Gandi, U. Schwingenschlögl, H.N. Alshareef, Nano Energy 35, 331 (2017). https://doi.org/10.1016/j.nanoen.2017.04.007

    CAS  Article  Google Scholar 

  9. 9.

    J. Ling, H. Zou, W. Yang, W. Chen, K. Lei, S. Chen, J. Energy Storage 20, 92 (2018). https://doi.org/10.1016/j.est.2018.09.007

    Article  Google Scholar 

  10. 10.

    X. Cao, D. Jia, D. Li, L. Cui, J. Liu, Chem. Eng. J. 348, 310 (2018). https://doi.org/10.1016/j.cej.2018.04.209

    CAS  Article  Google Scholar 

  11. 11.

    B. Che, H. Li, D. Zhou et al., Composites B 165, 671 (2019). https://doi.org/10.1016/j.compositesb.2019.02.026

    CAS  Article  Google Scholar 

  12. 12.

    A.M. Abioye, F.N. Ani, Renew. Sustain. Energy Rev. 52, 1282 (2015). https://doi.org/10.1016/j.rser.2015.07.129

    CAS  Article  Google Scholar 

  13. 13.

    M.R. Lukatskaya, S. Kota, Z. Lin et al., Nat. Energy 2, 17105 (2017). https://doi.org/10.1038/nenergy.2017.105

    CAS  Article  Google Scholar 

  14. 14.

    W. Yuan, L. Cheng, H. Wu, Y. Zhang, S. Lv, X. Guo, Chem. Commun. 54, 2755 (2018). https://doi.org/10.1039/c7cc09017j

    CAS  Article  Google Scholar 

  15. 15.

    N. Wang, P. Zhao, Q. Zhang, M. Yao, W. Hu, Composites B 113, 144 (2017). https://doi.org/10.1016/j.compositesb.2017.01.041

    CAS  Article  Google Scholar 

  16. 16.

    S. Liu, K.V. Sankar, A. Kundu, M. Ma, J.Y. Kwon, S.C. Jun, ACS Appl. Mater. Interfaces. 9, 21829 (2017). https://doi.org/10.1021/acsami.7b05384

    CAS  Article  Google Scholar 

  17. 17.

    L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Nat. Commun. 6, 6694 (2015). https://doi.org/10.1038/ncomms7694

    CAS  Article  Google Scholar 

  18. 18.

    B. Kirubasankar, V. Murugadoss, J. Lin et al., Nanoscale 10, 20414 (2018). https://doi.org/10.1039/c8nr06345a

    CAS  Article  Google Scholar 

  19. 19.

    B. Li, M. Zheng, H. Xue, H. Pang, Inorg. Chem. Front. 3, 175 (2016). https://doi.org/10.1039/c5qi00187k

    CAS  Article  Google Scholar 

  20. 20.

    R.R. Salunkhe, J. Tang, N. Kobayashi et al., Chem. Sci. 7, 5704 (2016). https://doi.org/10.1039/c6sc01429a

    CAS  Article  Google Scholar 

  21. 21.

    H. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, J. Power Sources 285, 281 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.106

    CAS  Article  Google Scholar 

  22. 22.

    X. Wang, H. Zhou, D. Zhang, M. Pi, J. Feng, S. Chen, J. Power Sources 387, 1 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.053

    CAS  Article  Google Scholar 

  23. 23.

    J.S. Shayeh, A. Ehsani, M.R. Ganjali, P. Norouzi, B. Jaleh, Appl. Surf. Sci. 353, 594–599 (2015). https://doi.org/10.1016/j.apsusc.2015.06.066

    CAS  Article  Google Scholar 

  24. 24.

    G. Li, H. Yang, F. Li, J. Du, W. Shi, P. Cheng, J. Mater. Chem. A 4, 9593 (2016). https://doi.org/10.1039/c6ta02059c

    CAS  Article  Google Scholar 

  25. 25.

    P. Lou, Z. Cui, Z. Jia, J. Sun, Y. Tan, X. Guo, ACS Nano 11, 3705 (2017). https://doi.org/10.1021/acsnano.6b08223

    CAS  Article  Google Scholar 

  26. 26.

    J. Hu, P. Wang, P. Liu et al., Electrochim. Acta 220, 258 (2016). https://doi.org/10.1016/j.electacta.2016.10.052

    CAS  Article  Google Scholar 

  27. 27.

    Y. Lu, J-k Liu, X-y Liu et al., CrystEngComm 15, 7071 (2013). https://doi.org/10.1039/c3ce41214h

    CAS  Article  Google Scholar 

  28. 28.

    Y. Jin, C. Zhao, Q. Jiang, C. Ji, Mater. Chem. Phys. 214, 89 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.086

    CAS  Article  Google Scholar 

  29. 29.

    X. Wang, W. Li, D. Xiong, D.Y. Petrovykh, L. Liu, Adv. Funct. Mater. 26, 4067 (2016). https://doi.org/10.1002/adfm.201505509

    CAS  Article  Google Scholar 

  30. 30.

    X. Wang, W. Li, D. Xiong, L. Liu, J. Mater. Chem. A 4, 5639 (2016). https://doi.org/10.1039/c5ta10317g

    CAS  Article  Google Scholar 

  31. 31.

    A. Bahramian, M. Eyraud, F. Vacandio, P. Knauth, Surf. Coat. Technol. 345, 40 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.075

    CAS  Article  Google Scholar 

  32. 32.

    D. Wang, L.B. Kong, M.C. Liu, Y.C. Luo, L. Kang, Chemistry 21, 17897 (2015). https://doi.org/10.1002/chem.201502269

    CAS  Article  Google Scholar 

  33. 33.

    L. Jin, H. Xia, Z. Huang et al., J. Mater. Chem. A 4, 10925 (2016). https://doi.org/10.1039/c6ta03028a

    CAS  Article  Google Scholar 

  34. 34.

    S. Liu, J. Feng, X. Bian, J. Liu, H. Xu, Y. An, Energy Environ. Sci. 10, 1222 (2017). https://doi.org/10.1039/c7ee00102a

    CAS  Article  Google Scholar 

  35. 35.

    M.-S. Balogun, W. Qiu, H. Yang et al., Energy Environ. Sci. 9, 3411 (2016). https://doi.org/10.1039/c6ee01930g

    CAS  Article  Google Scholar 

  36. 36.

    S. Liu, X. Bian, J. Liu et al., Surf. Eng. 31, 420 (2015). https://doi.org/10.1179/1743294414Y.0000000445

    CAS  Article  Google Scholar 

  37. 37.

    S. Liu, J. Feng, X. Bian, J. Liu, H. Xu, RSC Adv. 5, 60870 (2015). https://doi.org/10.1039/c5ra08926c

    CAS  Article  Google Scholar 

  38. 38.

    Y.Y. Tong, C.D. Gu, J.L. Zhang, H. Tang, X.L. Wang, J.P. Tu, Int. J. Hydrog. Energy 41, 6342 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.018

    CAS  Article  Google Scholar 

  39. 39.

    Y. Shao, Y. Zhao, H. Li, C. Xu, ACS Appl. Mater. Interfaces. 8, 35368 (2016). https://doi.org/10.1021/acsami.6b12881

    CAS  Article  Google Scholar 

  40. 40.

    C. Lin, Z. Gao, J. Yang, B. Liu, J. Jin, J. Mater. Chem. A 6, 6387 (2018). https://doi.org/10.1039/c8ta00260f

    CAS  Article  Google Scholar 

  41. 41.

    Z. Huang, C. Lv, Z. Chen, Z. Chen, F. Tian, C. Zhang, Nano Energy 12, 666 (2015). https://doi.org/10.1016/j.nanoen.2015.01.027

    CAS  Article  Google Scholar 

  42. 42.

    Y.-J. Yim, K.Y. Rhee, S.-J. Park, Composites B 98, 120 (2016). https://doi.org/10.1016/j.compositesb.2016.04.061

    CAS  Article  Google Scholar 

  43. 43.

    T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162, A5185 (2015). https://doi.org/10.1149/2.0201505jes

    CAS  Article  Google Scholar 

  44. 44.

    P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014). https://doi.org/10.1126/science.1249625

    CAS  Article  Google Scholar 

  45. 45.

    A.M. Abioye, Z.A. Noorden, F.N. Ani, Electrochim. Acta 225, 493 (2017). https://doi.org/10.1016/j.electacta.2016.12.101

    CAS  Article  Google Scholar 

  46. 46.

    X. Li, R. Ding, L. Yi, W. Shi, Q. Xu, E. Liu, Electrochim. Acta 222, 1169 (2016). https://doi.org/10.1016/j.electacta.2016.11.089

    CAS  Article  Google Scholar 

  47. 47.

    Y. Jiang, Z. Li, B. Li, J. Zhang, C. Niu, J. Power Sources 320, 13 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.077

    CAS  Article  Google Scholar 

  48. 48.

    Z. Li, X. Yu, A. Gu, H. Tang, L. Wang, Z. Lou, Nanotechnology 28, 065406 (2017). https://doi.org/10.1088/1361-6528/28/6/065406

    CAS  Article  Google Scholar 

  49. 49.

    R. Ding, L. Qi, M. Jia, H. Wang, Electrochim. Acta 107, 494 (2013). https://doi.org/10.1016/j.electacta.2013.05.114

    CAS  Article  Google Scholar 

  50. 50.

    W. Xu, B. Mu, A. Wang, Electrochim. Acta 194, 84 (2016). https://doi.org/10.1016/j.electacta.2016.02.072

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 21776051], the Guangzhou Education Bureau [Grant Nos. 1201541563], Department of Science and Technology of Guangdong Province [Grant Nos. 2017B090917002, 201802020029], the Natural Science Foundation of Guangdong (Grant No. 2018A030313423), Guangdong undergraduate innovation experiment project.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hanbo Zou or Shengzhou Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6562 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ling, J., Zou, H., Yang, W. et al. Self-enhanced electrochemical properties of Ni–P nanosphere with heterogeneous Ni and Ni–P nanoflake outer layer anchored on carbon cloth for asymmetric all-solid-state supercapacitors. J Mater Sci: Mater Electron 30, 18088–18100 (2019). https://doi.org/10.1007/s10854-019-02162-7

Download citation