Fast and low-temperature sintering of Ag paste due to nanoparticles formed in situ

Abstract

Sintering of silver is a popular method for forming interconnections in power electronics. Owing to their large size and spherical shape, micron- and submicron-sized Ag particles synthesized by a polyol method (denoted as polyol Ag particles) are not expected to undergo low-temperature, pressureless sintering. However, previous studies have shown sound bonding with shear strength of more than 40 MPa at 200 °C with micron and submicron polyol Ag particles. In this work, to understand the bonding mechanism of polyol Ag particles, the sintering behaviors of two Ag pastes, one with polyol Ag particles and another based on hybrid Ag particles consisting of micron-sized Ag flakes and submicron-sized Ag particles, were investigated without any applied pressure at 175 °C via transmission electron microscopy. During the sintering process, Ag nanoparticles formed in situ can significantly accelerate the sintering of the Ag paste, resulting in low electrical resistivity of the sintered Ag paste (9.8 × 10−6 Ω·cm) after only 5 min of sintering at 175 °C. The Ag nanoparticles were likely generated from the reduction of residual Ag ions or the Ag complex in the paste. The results were also verified by washing the Ag particles or adding Ag ions into the paste.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 4, 1943 (2010)

    CAS  Article  Google Scholar 

  3. 3.

    H. Schwarzbauer, R. Kuhnert, IEEE Trans. Ind. Appl. 27, 93–95 (1991)

    Article  Google Scholar 

  4. 4.

    K.S. Siow, J. Alloys Compd. 514, 6 (2012)

    CAS  Article  Google Scholar 

  5. 5.

    H. Zhang, Y. Gao, J. Jiu, K. Suganuma, J. Alloys Compd. 696, 123 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    D. Wakuda, K.S. Kim, K. Suganuma, Scr. Mater. 59, 649 (2008)

    CAS  Article  Google Scholar 

  7. 7.

    D. Wakuda, K.S. Kim, K. Suganuma, I.E.E.E. Trans, Components Packag. Technol. 33, 437 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    M.A. Asoro, D. Kovar, P.J. Ferreira, Chem. Commun. 50, 4835 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    S. Soichi, K. Suganuma, I.E.E.E. Trans, Components Packag. Manuf. Technol. 3, 923 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    J. Jiu, H. Zhang, S. Koga, S. Nagao, Y. Izumi, K. Suganuma, J. Mater. Sci. 26, 7183 (2015)

    CAS  Google Scholar 

  11. 11.

    Y. Suzuki, T. Ogura, M. Takahashi, A. Hirose, Mater. Charact. 98, 186 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    A.I. Boronin, V.I. Bukhityarov, A.L. Vishnevskii, G.K. Boreskov, V.I. Savchenko, Surf. Sci. 201, 195 (1988)

    CAS  Article  Google Scholar 

  13. 13.

    V.I. Bukhtiyarov, V.V. Kaichev, I.P. Prosvirin, J. Chem. Phys. 111, 2169 (2005)

    Article  Google Scholar 

  14. 14.

    Q. Xu, P. Pu, J. Zhao, C. Dong, C. Gao, Y. Chen, J. Mater. Chem. A 3, 542 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    L. Fan, S. Qiao, W. Song, M. Wu, X. He, X. Qu, Electrochim. Acta 105, 299 (2013)

    CAS  Article  Google Scholar 

  16. 16.

    T. Zhao, R. Sun, S. Yu, Z. Zhang, L. Zhou, H. Huang, R. Du, Colloids Surf A 366, 197 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    J.F. Weaver, G.B. Hoflund, Chem. Mater. 6, 1693 (1994)

    CAS  Article  Google Scholar 

  18. 18.

    R.D. Glover, J.M. Miller, J.E. Hutchison, ACS Nano 5, 8950 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume, T. Someya, Nat. Mater. 16, 834 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    P. Tavlarakis, J. Urban, N. Snow, J. Chromatogr. Sci. 49, 457 (2014)

    Article  Google Scholar 

  21. 21.

    J. Jiu, K. Murai, K. Kim, K. Suganuma, J. Mater. Sci. 21, 713 (2010)

    CAS  Google Scholar 

  22. 22.

    Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 110, 105 (1996)

    Article  Google Scholar 

  23. 23.

    J.J. Zhu, C.X. Kan, J.G. Wan, M. Han, G.H. Wang, J. Nanomater. 2011, 982547 (2011)

    Article  Google Scholar 

  24. 24.

    C. Kan, C. Wang, J. Zhu, H. Li, J. Solid State Chem. 183, 858 (2010)

    CAS  Article  Google Scholar 

  25. 25.

    S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci. 24, 2593 (2013)

    CAS  Google Scholar 

  26. 26.

    K. Moon, H.A.I. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y.I. Li, J. Electron. Mater. 34, 168 (2005)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. J. Jiu (Senju Metal Industry, Co., Ltd.) for her instruction on polyol method and the members of the Comprehensive Analysis Center, ISIR, Osaka University for their help in XPS, ICP–AES, and TEM measurements. This work was partly supported both by JST ALCA Grant Number JPMJAL1610 Japan, and by “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials” from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cai-Fu Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeom, J., Zhang, H., Li, CF. et al. Fast and low-temperature sintering of Ag paste due to nanoparticles formed in situ. J Mater Sci: Mater Electron 30, 18080–18087 (2019). https://doi.org/10.1007/s10854-019-02161-8

Download citation