Strong red emission and enhanced electrical properties in Pr-doped SrBi4Ti4O15 multifunctional ceramics

Abstract

Pr3+-modified SrBi4Ti4O15 ceramics were prepared using a conventional solid-state reaction method. The modified ceramics simultaneously exhibited both visible photoluminescence and enhanced electrical properties. In visible light, ceramics exhibited a strong red emission peak at 610 nm corresponding to the inter-4f transition 1D2 → 3H4 due to the absence of inversion symmetry at Pr3+ sites. This red luminescence is greatly potential in various display devices. Meanwhile, samples modified by Pr3+ in x = 0.002 showed a large piezoelectric constant of 20pC/N and a remnant polarization of 22.78 μC/cm2, as well as a high Curie temperature value of 511 °C and excellent piezoelectric temperature stability. Moreover, the Pr3+-modified SrBi4Ti4O15 ceramics show a fatigue-free polarization behavior. All these advantages may expand the application fields of the materials as multifunctional devices by integrating their luminescent and piezoelectric properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J.G. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. 135, 1–57 (2019)

    Article  Google Scholar 

  2. 2.

    D.F. Peng, H.Q. Sun, X.S. Wang, J.C. Zhang, M.M. Tang, X. Yao, J. Alloy. Compd. 511, 159–162 (2012)

    CAS  Article  Google Scholar 

  3. 3.

    J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, J. Appl. Phys. 117, 194104 (2015)

    Article  Google Scholar 

  4. 4.

    Q.W. Zhang, Y. Zhang, H.Q. Sun, Q. Sun, X.S. Wang, X.H. Hao, S.L. An, J. Eur. Ceram. Soc. 37, 955–966 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    P. Nayak, T. Badapanda, S. Panigrahi, Mater. Lett. 172, 32–35 (2016)

    CAS  Article  Google Scholar 

  6. 6.

    Z.P. Cao, C.M. Wang, K. Lau, Q. Wang, Q.W. Fu, H.H. Tian, Ceram. Int. 42, 11619–11625 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    A.R. James, Ceram. Int. 41, 5100–5106 (2015)

    CAS  Article  Google Scholar 

  8. 8.

    D. Peng, H. Zou, C. Xu, X. Wang, X. Yao, J. Alloys Compd. 552, 463–468 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    Z.R. Yao, R.Q. Chu, Z.J. Xu, J.G. Hao, J. Du, G.R. Li, Mater. Lett. 180, 252–255 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    P. Nayak, T. Badapanda, S. Panigrahi, J. Mater. Sci. 28, 625–632 (2017)

    CAS  Google Scholar 

  11. 11.

    H.L. Du, C.Y. Ma, W.X. Ma, H.T. Wang, Process. Appl. Ceram. 12, 303–312 (2018)

    Article  Google Scholar 

  12. 12.

    P. Nayak, A.K. Singh, Ceram. Inter. 44, 22840–22849 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    U. Ravikiran, P. Sarah, M. Buchi Suresh, E. Zacharias, Ferroelectrics 537(1), 237–245 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    D.F. Peng, H. Zou, C.N. Xu, X.S. Wang, X. Yao, J. Lin, T.T. Sun, AIP Adv. 2, 042187 (2012)

    Article  Google Scholar 

  15. 15.

    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, J. Electron. Mater. 46, 4398–4403 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, J. Mater. Sci. 28, 5840–5845 (2016)

    Google Scholar 

  17. 17.

    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, Mater. Chem. Phys. 203, 82–88 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    L. Yu, J.G. Hao, Z.J. Xu, W. Li, R.Q. Chu, J. Mater. Sci. 28, 16341–16347 (2017)

    CAS  Google Scholar 

  19. 19.

    Q.W. Zhang, H.Q. Sun, X.S. Wang, T. Zhang, Mater. Lett. 117, 283–285 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    X. Jiang, X. Jiang, C. Chen, N. Tu, Y. Chen, B. Zhang, J. Am. Ceram. Soc. 99, 1332–1339 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    C. Xue, X. Sun, Y. Zhang, Y. Zhao, H. Zhu, Q. Yang, M.L. Liu, C.M. Wang, J. Ouyang, Natural-superlattice structured CaBi2Nb2O9-Bi4Ti3O12 ferroelectric thin films. Ceram. Int. 43, 8459 (2017)

    CAS  Article  Google Scholar 

  22. 22.

    J. Hou, R.V. Kumar, Y. Qu, D. Krsmanovic, Scripta Mater. 61, 664–667 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    C.L. Diao, J.B. Xu, H.W. Zheng, L. Fang, Y.Z. Gu, W.F. Zhang, Ceram. Int. 39(6), 6991–6995 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    L. Ma, K. Zhao, J. Li, Q. Wu, M. Zhao, C. Wang, J. Rare. Earth. 27, 496–500 (2009)

    Article  Google Scholar 

  25. 25.

    D. Peng, H. Sun, X. Wang, J. Zhang, M. Tang, X. Yao, Mater. Sci. Eng. 176, 1513–1516 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    E. Subbarao, J. Am. Ceram. Soc. 45, 166–169 (1962)

    CAS  Article  Google Scholar 

  27. 27.

    Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 74, 1904–1906 (1999)

    CAS  Article  Google Scholar 

  28. 28.

    Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 77, 2749–2751 (2000)

    CAS  Article  Google Scholar 

  29. 29.

    T. Sivakumar, M. Itoh, J. Mater. Chem. 21, 10865–10870 (2011)

    CAS  Article  Google Scholar 

  30. 30.

    J. Mercurio, A. Souirti, M. Manier, B. Frit, Mater. Res. Bull. 27, 123–128 (1992)

    CAS  Article  Google Scholar 

  31. 31.

    X.P. Jiang, X.L. Fu, C. Chen, N. Tu, M.Z. Xu, X.H. Li, J. Adv. Ceram. 4, 54–60 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    P. Fang, Z. Xi, W. Long, X. Li, S. Chen, Solid State Commun. 231, 1–5 (2016)

    Article  Google Scholar 

  33. 33.

    Z.H. Peng, X.X. Zeng, F. Cao, X. Yang, J. Alloy. Compd. 695, 626–631 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, J. Alloys Compd. 647, 857–865 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    G. Liu, J. Yuan, R. Nie, L.M. Jiang, Z. Tan, J.G. Zhu, Q. Chen, J. Alloy. Compd. 697, 380–387 (2017)

    CAS  Article  Google Scholar 

  36. 36.

    P. Fang, P. Liu, Z. Xi, W. Long, X. Li, J. Alloys Compd. 595, 148–152 (2014)

    CAS  Article  Google Scholar 

  37. 37.

    Z. Peng, Y. Chen, Q. Chen, N. Li, X. Zhao, C. Kou, J. Alloys Compd. 590, 210–214 (2014)

    CAS  Article  Google Scholar 

  38. 38.

    J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, P. Fu, RSC Adv. 5, 82605–82616 (2015)

    CAS  Article  Google Scholar 

  39. 39.

    H. Zou, Y. Hu, X. Zhu, Y. Sui, X. Wang, Z. Song, Ferroelectrics 488, 62–70 (2015)

    CAS  Article  Google Scholar 

  40. 40.

    H. Zou, X. Hui, X. Wang, D. Peng, J. Li, Y. Li, J. Appl. Phys. 114, 223103 (2013)

    Article  Google Scholar 

  41. 41.

    P. Du, L.H. Luo, W.P. Li, Y.P. Zhang, H.B. Chen, Mater. Sci. Eng. 178, 1219–1223 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0402701), Focus on Research and Development Plan in Shandong Province (No. 2017GGX202008), the Project of Shandong Province Higher Educational Science and Technology Program (Nos. J17KA005), National Natural Science Foundation of China (Nos. 51701091, 51802137, 21603092), the Natural Science Foundation of Shandong Province of China (ZR2016EMM02, ZR2017PB003, ZR2018PEM009).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jigong Hao or Ruiqing Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Hao, J., Li, W. et al. Strong red emission and enhanced electrical properties in Pr-doped SrBi4Ti4O15 multifunctional ceramics. J Mater Sci: Mater Electron 30, 17890–17898 (2019). https://doi.org/10.1007/s10854-019-02141-y

Download citation