Electrical bistabilities behaviour of all-solution-processed non-volatile memories based on graphene quantum dots embedded in graphene oxide layers


This study demonstrates the feasibility of all-solution-processed mean to fabricate carbon-based non-volatile memory (NVM). The NVM devices were fabricated on polyethylene terephthalate (PET) substrate using spin-coating and spray-coating techniques in the structure of silver nanowires (AgNWs)/graphene oxide (GO)/graphene quantum dots (GQDs)/graphene oxide (GO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/PET. PEDOT:PSS was used as the bottom conductive layer and deposited by spin-coating method. GQDs were used as a charge trapping site in the structure and embedded in the two GO insulator layers. The AgNW metal electrode was formed on top of GO/GQDs/GO/PEDOT:PSS by the spray-coating method. The overall smooth surface morphology of the spray-coated films serves as good contact with the top metal electrode. The electrical characterization of the fabricated device shows the bistable current states with the ON/OFF ratio of 105. The NVM device can be programmed and erased multiple times. Various conduction mechanisms were proposed to describe the charge trapping process in GQD based on the obtained current–voltage measurement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Y. Zhai, J.-Q. Yang, Y. Zhou, J.-Y. Mao, Y. Ren, V.A. Roy, S.-T. Han, Mater. Horizons 5, 641 (2018)

    Article  Google Scholar 

  2. 2.

    Y. Shan, Z. Lyu, X. Guan, A. Younis, G. Yuan, J. Wang, S. Li, T. Wu, Phys. Chem. Chem. Phys. 20, 23837 (2018)

    Article  Google Scholar 

  3. 3.

    P.C. Ooi, M.A.S. Mohammad Haniff, M.F. Mohd Razip Wee, B.T. Goh, C.F. Dee, M.A. Mohamed, B.Y. Majlis, Sci. Rep. 9, 6761 (2019). https://doi.org/10.1038/s41598-019-43279-3

    Article  Google Scholar 

  4. 4.

    S.S. Joo, J. Kim, S.S. Kang, S. Kim, S.-H. Choi, S.W. Hwang, Nanotechnology 25, 255203 (2014)

    Article  Google Scholar 

  5. 5.

    P.C. Ooi, J. Lin, T.W. Kim, F. Li, Org. Electron. 38, 379 (2016)

    Article  Google Scholar 

  6. 6.

    M.H. Mohammad, N.A. Zainal, S.M. Hafiz, P.C. Ooi, M.I. Syono, A.M. Hashim, ACS Appl. Mater. Interfaces 11, 4625 (2019). https://doi.org/10.1021/acsami.8b19043

    Article  Google Scholar 

  7. 7.

    S.K. Pradhan, B. Xiao, S. Mishra, A. Killam, A.K. Pradhan, Sci. Rep. 6, 2673 (2016)

    Google Scholar 

  8. 8.

    B.F. Bory, P.R. Rocha, H.L. Gomes, D.M. De Leeuw, S.C. Meskers, J. Appl. Phys. 118, 205503 (2015)

    Article  Google Scholar 

  9. 9.

    K.-J. Heo, W.-Y. Kim, S.-J. Kim, J. Nanosci. Nanotechnol. 16, 6304 (2016)

    Article  Google Scholar 

  10. 10.

    M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, J. Hur, S.-E. Ahn, M. Chang, Y.-B. Kim, U.-I. Chung, C.-J. Kim, IEEE Electron. Device Lett. 31, 725 (2010)

    Article  Google Scholar 

  11. 11.

    P.C. Ooi, M.A.S.M. Haniff, M.F.M.R. Wee, C.F. Dee, B.T. Goh, M.A. Mohamed, B.Y. Majlis, Carbon 124, 547 (2017). https://doi.org/10.1016/j.carbon.2017.09.004

    Article  Google Scholar 

  12. 12.

    E.A. Bakar, M.A. Mohamed, P.C. Ooi, M.F.M.R. Wee, C.F. Dee, B.Y. Majlis, Org. Electron. 61, 289 (2018). https://doi.org/10.1016/j.orgel.2018.06.006

    Article  Google Scholar 

  13. 13.

    Q. Zheng, B. Zhang, X. Lin, X. Shen, N. Yousefi, Z.-D. Huang, Z. Li, J.-K. Kim, J. Mater. Chem. 22, 25072 (2012)

    Article  Google Scholar 

  14. 14.

    S. Deng, V. Berry, Mater. Today 19, 197 (2016)

    Article  Google Scholar 

  15. 15.

    X. Shen, X. Lin, N. Yousefi, J. Jia, J.-K. Kim, Carbon 66, 84 (2014)

    Article  Google Scholar 

  16. 16.

    P.C. Ooi, M.F.M.R. Wee, C.F. Dee, C.C. Yap, M.M. Salleh, B.Y. Majlis, Thin Solid Films 645, 45 (2018). https://doi.org/10.1016/j.tsf.2017.10.044

    Article  Google Scholar 

  17. 17.

    H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, C. Adachi, Appl Phys Lett 86, 083502 (2005). https://doi.org/10.1063/1.1866230

    Article  Google Scholar 

  18. 18.

    R. Yang, C. Zhu, J. Meng, Z. Huo, M. Cheng, D. Liu, W. Yang, D. Shi, M. Liu, G. Zhang, Sci. Rep. 3, 2126 (2013)

    Article  Google Scholar 

Download references


This study was financially supported by the Research University Grant from Universiti Kebangsaan Malaysia (GUP-2018-085), LRGS/NANOMITE/UKM-UKM/04/01 from the Ministry of Education Malaysia, and “Center for the Semiconductor Technology Research” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This work also supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST-108-3017-F-009-003. We would also like to further extend our gratitude to Skim Zamalah Penyelidik Tersorhor from Pusat Pengurusan Penyelidikan dan Instrumentasi (CRIM), Universiti Kebangsaan Malaysia.

Author information



Corresponding authors

Correspondence to Poh Choon Ooi or M. F. Mohd. Razip Wee or Chang Fu Dee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaafar, M.M., Ooi, P.C., Mohd. Razip Wee, M.F. et al. Electrical bistabilities behaviour of all-solution-processed non-volatile memories based on graphene quantum dots embedded in graphene oxide layers. J Mater Sci: Mater Electron 30, 16415–16420 (2019). https://doi.org/10.1007/s10854-019-02015-3

Download citation