Phase evolution, microstructure, thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3–Bi(Ni0.5Zr0.5)O3 ceramics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


(K0.45Na0.45Li0.04La0.02)NbO3–Bi(Ni0.5Zr0.5)O3[(1 − x)KNLLN-xBNZ, 0 ≤ x ≤ 0.02] ceramics were fabricated via a traditional solid state reaction method. The addition of BNZ can enhance the electrical properties of KNLLN ceramics. As x = 0.015, the sample had good performance with high εr ~ 1665 and excellent thermal stability (Δε/ε100°C ≤ ± 12%) from 100 to 447 °C, indicating that this ceramic has potential application prospects in wider working-temperature range. The electrical behavior at high temperatures of (1 − x)KNLLN-xBNZ ceramics was also analyzed. The results show that the relaxation induced by the double ionized oxygen vacancies is thermally activated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    J.-J. Zhou, J.-F. Li, X.-W. Zhang, J. Eur. Ceram. Soc. 32(2), 267–270 (2012)

    Article  Google Scholar 

  2. 2.

    A. Khesro, D. Wang, F. Hussain, D.C. Sinclair, A. Feteira, I.M. Reaney, Appl. Phys. Lett. 109(14), 142907 (2016)

    Article  Google Scholar 

  3. 3.

    X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, B. Zhang, X. Lou, J. Zhu, J. Mater. Chem. A 2(12), 4122 (2014)

    Article  Google Scholar 

  4. 4.

    J. Wu, D. Xiao, Y. Wang, J. Zhu, W. Shi, W. Wu, B. Zhang, J. Li, J. Alloys Compd. 476(1–2), 782–786 (2009)

    Article  Google Scholar 

  5. 5.

    K. Wang, J.-F. Li, J. Adv. Ceram. 1(1), 24–37 (2012)

    Article  Google Scholar 

  6. 6.

    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 8 (2018)

    Google Scholar 

  7. 7.

    F. Azough, M. Wegrzyn, R. Freer, S. Sharma, D. Hall, J. Eur. Ceram. Soc. 31(4), 569–576 (2011)

    Article  Google Scholar 

  8. 8.

    D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I.M. Reaney, J. Am. Ceram. Soc. 100(2), 627–637 (2017)

    Article  Google Scholar 

  9. 9.

    H. Zhang, S. Jiang, K. Kajiyoshi, J. Alloys Compd. 495(1), 173–180 (2010)

    Article  Google Scholar 

  10. 10.

    J. Bernard, A. Benčan, T. Rojac, J. Holc, B. Malič, M. Kosec, J. Am. Ceram. Soc. 91(7), 2409–2411 (2008)

    Article  Google Scholar 

  11. 11.

    L. Zhengfa, L. Yongxiang, Z. Jiwei, Curr. Appl. Phys. 11(3), S2–S13 (2011)

    Article  Google Scholar 

  12. 12.

    F. He, X. Chen, J. Chen, Y. Wang, H. Zhou, L. Fang, J. Mater. Sci. 24(11), 4346–4350 (2013)

    Google Scholar 

  13. 13.

    X. Chen, X. Yan, G. Liu, X. Li, G. Huang, H. Zhou, J. Electron. Mater. 47(1), 794–799 (2018)

    Article  Google Scholar 

  14. 14.

    G. Liu, X. Chen, G. Huang, D. Ma, H. Zhou, J. Mater. Sci. 28(5), 3931–3935 (2016)

    Google Scholar 

  15. 15.

    F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, J. Eur. Ceram. Soc. 29(14), 3045–3052 (2009)

    Article  Google Scholar 

  16. 16.

    D.B. Deutz, N.T. Mascarenhas, S. Van Der Zwaag, W.A. Groen, J. Am. Ceram. Soc. 100(3), 1108–1117 (2017)

    Article  Google Scholar 

  17. 17.

    D. Gao, K.W. Kwok, D. Lin, H.L.W. Chan, J. Phys. D 42(3), 035411 (2009)

    Article  Google Scholar 

  18. 18.

    D. Yang, Z. Yang, X. Zhang, L. Wei, X. Chao, Z. Yang, J. Alloys Compd. 716, 21–29 (2017)

    Article  Google Scholar 

  19. 19.

    D. Lin, K.W. Kwok, Int. J. Appl. Ceram. Technol. 8(3), 684–690 (2011)

    Article  Google Scholar 

  20. 20.

    J. Sun, X. Chen, X. Li, X. Yan, X. Li, H. Zhou, X. Liu, H. Ruan, J. Mater. Sci. 30, 695–700 (2018)

    Google Scholar 

  21. 21.

    X. Chen, X. Yan, X. Li, G. Liu, J. Sun, X. Li, H. Zhou, J. Alloys Compd. 762, 697–705 (2018)

    Article  Google Scholar 

  22. 22.

    X. Wu, K.W. Kwok, F.L. Li, J. Alloys Compd. 580, 88–92 (2013)

    Article  Google Scholar 

  23. 23.

    J. Wang, L.H. Luo, Y.P. Huang, W.P. Li, J. Am. Ceram. Soc. 99(5), 1625–1630 (2016)

    Article  Google Scholar 

  24. 24.

    S. Sang, Z. Yuan, L. Zheng, E. Sun, R. Zhang, J. Wang, R. Wang, B. Yang, M. Liu, Opt. Mater. 45, 104–108 (2015)

    Article  Google Scholar 

  25. 25.

    X. Lv, J. Wu, J. Zhu, D. Xiao, Phys. Chem. Chem. Phys. 20(30), 20149–20159 (2018)

    Article  Google Scholar 

  26. 26.

    Q. Chai, X. Zhao, X. Chao, Z. Yang, RSC Adv. 7(45), 28428–28437 (2017)

    Article  Google Scholar 

  27. 27.

    B. Malic, J. Bernard, A. Bencan, M. Kosec, J. Eur. Ceram. Soc. 28(6), 1191–1196 (2008)

    Article  Google Scholar 

  28. 28.

    K. Lily, K. Kumari, K.L. Prasad, Yadav. J. Mater. Sci. 42(15), 6252–6259 (2007)

    Article  Google Scholar 

  29. 29.

    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloys Compd. 750, 507–514 (2018)

    Article  Google Scholar 

  30. 30.

    H. Xing, J. Zhang, X. Jia, H. Pan, J. He, J. Wang, W. Bai, F. Wen, Ceram. Int. 44(8), 10006–10009 (2018)

    Article  Google Scholar 

  31. 31.

    S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42(1), 943–951 (2016)

    Article  Google Scholar 

  32. 32.

    X.-P. Jiang, X.-A. Jiang, C. Chen, N. Tu, Y.-J. Chen, B.-C. Zhang, J. Phys. D 49(12), 125101 (2016)

    Article  Google Scholar 

  33. 33.

    X. Sun, J. Deng, L. Liu, S. Liu, D. Shi, L. Fang, B. Elouadi, Mater. Res. Bull. 73, 437–445 (2016)

    Article  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of China (Nos. 11664008 and 61761015), Natural Science Foundation of Guangxi (Nos. 2018GXNSFFA050001, 2017GXNSFDA198027 and 2017GXNSFFA198011).

Author information



Corresponding author

Correspondence to Xiuli Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Sun, J., Li, X. et al. Phase evolution, microstructure, thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3–Bi(Ni0.5Zr0.5)O3 ceramics. J Mater Sci: Mater Electron 30, 16407–16414 (2019).

Download citation